Verified Compilation of a Synchronous Dataflow Language with State Machines

Basile Pesin
Inria Paris
École normale supérieure, CNRS, PSL University

Friday, October 13

Programming embedded systems

(c) Cjp 24

© Akiry

Programming embedded systems

(c) Cjp 24

Akiry

Programming embedded systems

Programming embedded systems

Programming embedded systems

Low-level languages and high-level specifications

- Engineers write high-level specifications of the system
specification

Low-level languages and high-level specifications

- Engineers write high-level specifications of the system
- Programmers write programs that can be compiled and run

Low-level languages and high-level specifications

- Engineers write high-level specifications of the system
- Programmers write programs that can be compiled and run

Low-level languages and high-level specifications

- Engineers write high-level specifications of the system
- Programmers write programs that can be compiled and run
- Does the program really implement the spec?
satisfies

Low-level languages and high-level specifications

- Engineers write high-level specifications of the system
- Programmers write programs that can be compiled and run
- Does the program really implement the spec?
satisfies

Low-level languages and high-level specifications

- Engineers write high-level specifications of the system
- Programmers write programs that can be compiled and run
- Does the program really implement the spec?
satisfies

Low-level languages and high-level specifications

- Engineers write high-level specifications of the system
- Programmers write programs that can be compiled and run
- Does the program really implement the spec?
- Reduce the gap by programming in a language closer to the spec satisfies

Programming Embedded Systems with State Machines

- Statecharts [Harel (1987): Statecharts: A Visual Formalism for Complex Systems]

Programming Embedded Systems with State Machines

- Statecharts [Harel (1987): Statecharts: A Visual Formalism for Complex Systems]
- SyncCharts $\left[\begin{array}{l}\text { André (1995): SyncCharts: A Visual Repre- } \\ \text { sentation of Reactive Behaviors }\end{array}\right]$
- Mode-Automata [Maraninchi and Rémond (1998): Mode-Automata: About
- Mode-Automata $\begin{aligned} & \text { Modes and States for Reactive Systems } \\ & \text { Mode- }\end{aligned}$

Programming Embedded Systems with State Machines

- Statecharts [Harel (1987): Statecharts: A Visual Formalism for Complex Systems]

- Mode-Automata [Maraninchi and Rémond (1998): Mode-Automata: About

Mode-Automata \Modes and States for Reactive Systems

- Lucid Synchrone [Touzet (2006): Lutid Synchrone, v. 3.]

Programming Embedded Systems with State Machines

- Statecharts [Harel (1987): Statecharts: A Visual Formalism for Complex Systems]
- SyncCharts $\begin{aligned} & \text { Andrée (1095): Syyccharss: } A \text { Visal Repre- } \\ & \text { sentation of } \\ & \text { Reactive Behaviors }\end{aligned}$
- Mode-Automata [Maraninhin and Remond (1998): Mode-Automata: About
- Lucid Synchrone [Touzet (2006): Lutid Synchrone, v. 3.]
- Scade $6\left[\begin{array}{l}\text { Colaco, Pagano. and pouret (2017). Scade 6; A. Formal } \\ \text { Languase for Embedded Critical Sotwure }\end{array}\right]$

Programming Embedded Systems with State Machines

- Statecharts [Harel (1987): Statecharts: A Visual Formalism for Complex Systems]
- SyncCharts $\left[\begin{array}{l}\text { André (1995): SyncCharts: A Visual Repre- } \\ \text { sentation of Reactive Behaviors }\end{array}\right]$
- Mode-Automata $\left[\begin{array}{l}\text { Maraninchi and Rémond (1998): Mode-Automata: About } \\ \text { Modes and States for Reactive Systems }\end{array}\right.$
- Lucid Synchrone $\left[\begin{array}{l}\text { Pouzet (2006): Lucid Synchrone, v. 3. } \\ \text { Tutorial and reference manual }\end{array}\right]$
- Scade $6\left[\begin{array}{l}\text { Colaço, Pagano, and Pouzet (2017): Scade 6: A Formal } \\ \text { Language for Embedded Critical Software Development }\end{array}\right]$
- Vélus: A subset of Scade 6

An embedded example: stepper motor for a small printer

An embedded example: stepper motor for a small printer

An embedded example: stepper motor for a small printer

An embedded example: stepper motor for a small printer

An embedded example: stepper motor for a small printer

An embedded example: stepper motor for a small printer

An embedded example: stepper motor for a small printer

An embedded example: stepper motor for a small printer

An embedded example: stepper motor for a small printer

An embedded example: stepper motor for a small printer

A simple dataflow program

| inc | 5 | 4 | 1 | 3 | 2 | 8 | 3 | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 fby \circ | | | | | | | | |
| o | | | | | | | | |

A simple dataflow program

inc	5	4	1	3	2	8	3	\ldots
0 fby \circ	0	0						
0								

A simple dataflow program

inc	5	4	1	3	2	8	3	\ldots
0 fby \circ	0							
0	5							

A simple dataflow program

inc	5	4	1	3	2	8	3	\ldots
0 fby	\circ	0	5					
0	5							

A simple dataflow program

inc	5	4	1	3	2	8	3	\ldots
0 fby	\circ	0	5					
0	5	9						

A simple dataflow program

inc	5	4	1	3	2	8	3	\ldots
0 fby	\circ	0	5	9	10	13	15	23
\ldots								
0	5	9	10	13	15	23	26	\ldots

A simple dataflow program

node count_up(inc : int)
returns (o : int)
let

$$
\begin{aligned}
& \circ=(0 \text { fby o })+i n c ; \\
& \text { tel }
\end{aligned}
$$

Modular resetting of equations

```
reset
    time = count_up(50)
every (false fby step)
```


step	\ldots
time	\ldots

Modular resetting of equations

```
reset
    time = count_up(50)
every (false fby step)
        \Uparrow
    reset
    time = (0 fby time) + 50
every (false fby step)
```


Modular resetting of equations

```
reset
    time = count_up(50)
every (false fby step)
        | equivalent
reset
    time = (0 fby time) + 50
every (false fby step)
```

step	F	F	T	\ldots
time	50	100	150	\ldots

Modular resetting of equations

```
reset
    time = count_up(50)
every (false fby step)
        | equivalent
reset
    time = (0 fby time) + 50
every (false fby step)
```

step	F	F	T	F	F	F	T	\ldots
time				50	100	150	200	\ldots

Modular resetting of equations

```
reset
    time = count_up(50)
every (false fby step)
        | equivalent
reset
    time = (0 fby time) + 50
every (false fby step)
```

step	F	F	T	F	F	F	T	F	\ldots
time								50	\ldots

Modular resetting of equations

```
reset
    time = count_up(50)
every (false fby step)
        | equivalent
    reset
    time = (0 fby time) + 50
every (false fby step)
```


Hierarchical State Machines

Hierarchical State Machines

Hierarchical State Machines

```
node feed_pause(pause : bool) returns (ena, step : bool)
var time : int;
let
    reset
        time = count_up(50)
        every (false fby step);
```



```
automaton initially Feeding
state Feeding do
    ena = true;
    automaton initially Starting
                state Starting do
            step = true fby false
                unless time >= 750 then Moving
            state Moving do
            step = true fby false
                unless time >= 500 then Moving
    end;
unless pause then Holding
end
state Holding do
```


Switch blocks

$$
\begin{aligned}
\mathrm{mA} & =\text { not (last } \mathrm{mB}) ; \\
\mathrm{mB} & =\text { last } \mathrm{mA} ;
\end{aligned}
$$


```
last mA = true;
last mB = false;
```


Switch blocks

node drive_sequence(step : bool)
returns (mA, mB : bool)
let
switch step
| true do
$\mathrm{mA}=$ not (last mB);
$\mathrm{mB}=$ last mA;
| false do (mA, mB) = (last mA, last mB)
end;
last mA = true;
last mB = false;
tel

step	F	T	T	F	F	T	F	T	F	T	F	\ldots
last mA	T											\ldots
last mB	F											\ldots
mA	T											\ldots
mB	F											\ldots

Switch blocks

node drive_sequence(step : bool)
returns (mA, mB : bool)
let
switch step
| true do
$\mathrm{mA}=$ not (last mB) ;
$\mathrm{mB}=$ last mA ;
| false do (mA, mB) $=$ (last mA , last mB)
end;
last $\mathrm{mA}=$ true;
last $m B=$ false;
tel

step	F	T	T	F	F	T	F	T	F	T	F	\ldots
last mA	T	T	T									\ldots
last mB	F	F	T									\ldots
mA	T	T	F									\ldots
mB	F	T	T									\ldots

Switch blocks

node drive_sequence(step : bool)
returns (mA, mB : bool)
let
switch step
| true do
$\mathrm{mA}=$ not (last mB);
$\mathrm{mB}=$ last mA;
| false do (mA, mB) = (last mA, last mB)
end;
last mA = true;
last mB = false;
tel

step	F	T	T	F	F	T	F	T	F	T	F	\ldots
last mA	T	T	T	F	F							\ldots
last mB	F	F	T	T	T						\ldots	
mA	T	T	F	F	F							\ldots
mB	F	T	T	T	T						\ldots	

Switch blocks

node drive_sequence(step : bool)
returns (mA, mB : bool)
let
switch step
| true do
$\mathrm{mA}=$ not (last mB);
$\mathrm{mB}=$ last mA;
| false do (mA, mB) = (last mA, last mB)
end;
last mA = true;
last mB = false;
tel

step	F	T	T	F	F	T	F	T	F	T	F	\ldots
last mA	T	T	T	F	F	F	F	F	T	T	T	\ldots
last mB	F	F	T	T	T	T	F	F	F	F	T	\ldots
mA	T	T	F	F	F	F	F	T	T	T	T	\ldots
mB	F	T	T	T	T	F	F	F	F	T	T	\ldots

Compiling Lustre to C

executable

Compiling Lustre to C

```
node count_up(inc : int)
```

returns (o : int)
let
$o=(0 \mathrm{fby} 0)+i n c ;$
tel


```
node count_up(inc : int)
struct count_up
returns (o : int)
let
};
    o = (0 fby o) + inc;
tel
```



```
node count_up(inc : int)
returns (o : int)
let
    o = (0 fby o) + inc;
tel
```

```
struct count_up {
    int norm$1;
};
void fun$reset$count_up(struct count_up *self) {
    (*self).norm$1 = 0;
}
```


Compiling Lustre to C

```
node count_up(inc : int)
returns (o : int)
let
    o = (0 fby o) + inc;
tel
```

```
struct count_up {
    int norm$1;
    };
    void fun$reset$count_up(struct count_up *self) {
    (*self).norm$1 = 0;
}
int fun$step$count_up(struct count_up *self, int inc) {
    register int o;
    o = (*self).norm$1 + inc;
    (*self).norm$1 = 0;
    return o;
```


Compiler verification

Compiler verification

In an Interactive Theorem Prover (recently):

Compiler verification

In an Interactive Theorem Prover (recently):

- CompCert: C \rightarrow machine code [Blazy, Dargaye, and Leroy (2006): Formal Verification of a C Compiler Front-End
- CakeML: SML \rightarrow machine code
[Kumar, Myreen, Norrish, and Owens (2014):] CakeML: A Verified Implementation of ML]

Compiler verification

In an Interactive Theorem Prover (recently):

- CompCert: C \rightarrow machine code [Blazy, Dargaye, and Leroy (2006): Formal Verification of a C Compiler Front-End
- CakeML: SML \rightarrow machine code [Kumar, Myreen, Norrish, and Owens (2014):] CakeML: A Verified Implementation of ML]
- Vélus: Lustre/Scade $6 \rightarrow \mathrm{C}$

The Vélus Compiler

rewriting
dataflow

The Vélus Compiler

000

The Vélus Compiler

The Coq Interactive Theorem Prover

- A functional programming language
- 'Extraction' to OCaml programs

```
I Inductive N :=
N:N
| S:N}->\mathbb{N}
Fixpoint plus n m :=
    match n with
    | 0 m m
    | S n m S (plus n m)
    end.
11 Fact plus_n_0 : \forall n,
    plus n 0 = n
Proof.
induction n; simpl
        reflexivity.
        now rewrite IHn.
Qed.
Fact plus_n_s : }\forall\textrm{nm
        plus n (S m) = S (plus n m).
Proof.
    induction n; intros; simpl.
        - reflexivity.
        = now rewrite IHn.
Qed.
Lemma plus_comm : \forall n m,
        plus n m = plus m n.
Proof.
    induction n; intros.
        = now rewrite plus_n_0.
        rewrite plus_n_S; simpl.
        now rewrite IHn.
Qed.
```

```
1 \text { goal (ID 29)}
```

1 goal (ID 29)
-n:N
-n:N

- IHn : \forallm : N,
- IHn : \forallm : N,
plus n m = plus m
plus n m = plus m
m:N
m:N
plus (S n) m = plus m (S n)
plus (S n) m = plus m (S n)

The Coq Interactive Theorem Prover

- A functional programming language
- 'Extraction' to OCaml programs
- A specification language
IN
IN
3 | S:N }->\mathbb{N}\mathrm{ .
3 | S:N }->\mathbb{N}\mathrm{ .
5 Fixpoint plus n m :=
5 Fixpoint plus n m :=
match n with
match n with
| 0 m m
| 0 m m
| S n S (plus n m)
| S n S (plus n m)
end.
end.
Fact plus_n_0 : \forall n,
Fact plus_n_0 : \forall n,
plus n O = n.
plus n O = n.
Proof.
Proof.
induction n; simpl.
induction n; simpl.
reflexivity.
reflexivity.
now rewrite IHn.
now rewrite IHn.
Qed.
Qed.
Fact plus_n_s : \forall nm,
Fact plus_n_s : \forall nm,
plus n (S m) = S (plus n m).
plus n (S m) = S (plus n m).
induction n; intros; simpl.
induction n; intros; simpl.
= reflexivity.
= reflexivity.
now rewrite IHn.
now rewrite IHn.
Qed.
Qed.
Lemma plus_conm : \forall n m,
Lemma plus_conm : \forall n m,
poot.
poot.
induction n; intros.
induction n; intros.
now rewrite plus_n_0.
now rewrite plus_n_0.
rewrite plus_n_S; simpl.
rewrite plus_n_S; simpl.
now rewrite IHn.
now rewrite IHn.
Qed.
1 goal (ID 29)
1 goal (ID 29)
-n:N
-n:N
- IHn : \forallm : N,
- IHn : \forallm : N,
plus n m = plus m n
plus n m = plus m n
-m:N
-m:N
plus (S n) m = plus m (S n)
plus (S n) m = plus m (S n)
151 *goals* 9:0 All

The Coq Interactive Theorem Prover

- A functional programming language
- 'Extraction' to OCaml programs
- A specification language
- Tactic-based interactive proof

```
1 Inductive N :=
2 | 0: N
3 | S:N }->\mathbb{N}\mathrm{ .
4}\mathrm{ Fixpoint plus n m :=
Fixpoint plus n
    match n
| l l m m
    end.
```



```
Fact plus_n_0 : \forall n,
    roof.
induction n; simpl
    reflexivity.
        now rewrite IHn.
Qed.
Fact plus_n_s : }\forall\textrm{nm
        plus n (S m) = S (plus n m).
Proof.
    induction n; intros; simpl.
        = reflexivity.
        = now rewrite IHn.
    揞.
```



```
Lemma plus_conm : }\forall\textrm{n m}\mathrm{ ,
            plus n m = plus m n.
    induction n; intros.
    now rewrite plus_n_0.
    rewrite plus_n_S; simpl.
    = rewr rewrite IHn.
```

```
1 goal (ID 29)
-n:N
-IHn : \forallm:N,
    plus n m = plus m n
-m:N
    plus (S n) m = plus m (S n)
```


Relational Semantics of Vélus

Dataflow relational semantics

$$
\begin{aligned}
& G(f)=\text { node } f\left(x_{1}, \ldots, x_{n}\right) \text { returns }\left(y_{1}, \ldots, y_{m}\right) b / k \\
& \forall i, H\left(x_{i}\right) \equiv x s s_{i}
\end{aligned} \underset{\forall j, H\left(y_{j}\right) \equiv y s s_{j} \quad G, H,\left(\text { base-of }\left(x s_{1}, \ldots, x s_{n}\right)\right) \vdash b l k}{G \vdash f(x s s) \Downarrow y s s}
$$

inc	5	4	1	3	2	8	3	\ldots
0	5	9	10	13	15	23	26	\ldots

Dataflow relational semantics

$$
\begin{aligned}
& \begin{array}{l}
G(f)=\text { node } f\left(x_{1}, \ldots, x_{n}\right) \text { returns }\left(y_{1}, \ldots, y_{m}\right) b l k \\
\forall i, H\left(x_{i}\right) \equiv x s s_{i}
\end{array} \underset{\forall j, H\left(y_{j}\right) \equiv y s s_{j} \quad G, H,\left(\text { base-of }\left(x s_{1}, \ldots, x s_{n}\right)\right) \vdash b l k}{G \vdash f(x s s) \Downarrow y s s} \\
& \frac{\forall i, H\left(x s_{i}\right) \equiv v s_{i} \quad G, H, b s \vdash e s \Downarrow\left[v s_{i}\right]^{i}}{G, H, b s \vdash x s=e s}
\end{aligned}
$$

Equations
the clock is true the right-hand expression is evaluated He clock is true, the right-hand expres of associated with the variable on the let-hand
side.
 id $=(\mathrm{ck}) \exp \xrightarrow{\sigma} \mathrm{id}=(\mathrm{ck}) \times \times \mathrm{P}^{i}$
If the clock is not true, the len $($ da $)=1$
ated.

$$
\frac{\sigma(\mathrm{ck}) \neq t t, \sigma(1 \mathrm{~d})}{1 \mathrm{~d}=(\mathrm{ck}) \exp \xrightarrow{\square} \mathrm{td}(\mathrm{ck})=\mathrm{exp}}
$$

These rules define σ to be the solution of a fixpoint equa tion. Moreover, this solution rrast be uniguc (ath be detailed
programin contz

Dataflow relational semantics - in Coq

```
Inductive sem_exp:
[...]
with sem_equation:
    Seq:
    Forall2 (sem_exp G H bs) es ss }
    Forall2 (sem_var H) xs (concat ss) }
    sem_equation G H bs (xs, es)
[...]
with sem_node:
| Snode:
    find_node f G = Some n }
    Forall2 (fun x m sem_var H (Var x)) (List.map fst n.(n_in)) ss }
    Forall2 (fun x m sem_var H (Var x)) (List.map fst n.(n_out)) os }
    let bs := clocks_of ss in
    sem_block H bs n.(n_block) }
    sem_node f ss os.
```


Dataflow relational semantics - in Coq

```
Inductive sem_exp:
[...]
with sem_equation:
| Seq:
    Forall2 (sem_exp G H bs) es ss }
    Forall2 (sem_var H) xs (concat ss) }
                                    \foralli,H(x\mp@subsup{s}{i}{})\equivv\mp@subsup{s}{i}{}\quadG,H,bs\vdashes\Downarrow[v\mp@subsup{s}{i}{}\mp@subsup{]}{}{i}
    sem_equation GH bs (xs, es)
with sem_node:
Snode:
    find_node f G = Some n }
    Forall2 (fun x m sem_var H (Var x)) (List.map fst n.(n_in)) ss }
    Forall2 (fun x m sem_var H (Var x)) (List.map fst n.(n_out)) os }
    let bs := clocks_of ss in
    sem_block H bs n.(n_block) }
    sem_node f ss os.
    G(f)= node f(x, ,.., \mp@subsup{x}{n}{}) returns ( }\mp@subsup{y}{1}{},\ldots,\mp@subsup{y}{m}{})b/
    \foralli,H(\mp@subsup{x}{i}{})\equivxs\mp@subsup{s}{i}{}\quad\forallj,H(\mp@subsup{y}{j}{})\equivys\mp@subsup{s}{j}{}\quadG,H,(\mathrm{ base-of }(x\mp@subsup{s}{1}{},\ldots,x\mp@subsup{s}{n}{}))\vdashblk
```


Dataflow relational semantics - in Coq

```
Inductive sem_exp:
[...]
with sem_equation:
    Seq:
    Forall2 (sem_exp G H bs) es ss }
    Forall2 (sem_var H) xs (concat ss) }
    \foralli,H(x\mp@subsup{s}{i}{})\equivv\mp@subsup{s}{i}{}
    sem_equationGHibs (xs, es)
[...]
with sem_node:
    Snode:
    find_node f G = Some n }
    Forall2 (fun x m sem_var H (Var x)) (List.map fst n.(n_in)) ss }
    Forall2 (fun x m sem_var H (Var x)) (List.map fst n.(n_out)) os }
    let bs := clocks_of ss in
    sem_block H bs n.(n_block) }
    sem_node f ss os.
```


Dataflow relational semantics - in Coq

```
Inductive sem_exp:
[...]
with sem_equation:
    Seq:
    Forall2 (sem_expGH bs) es ss }
    Forall2 (sem_var H) xs (concat ss)}
    sem_equation G H bs (xs, es)
[...]
with sem_node:
| Snode:
    find_node f G = Some n }
    Forall2 (fun x m sem_var H (Var x)) (List.map fst n.(n_in)) ss }
    Forall2 (fun x m sem_var H (Var x)) (List.map fst n.(n_out)) os }
    let bs := clocks_of ss in
    sem_block H bs n.(n_block) }
    sem_node f ss os.
```


fby operator semantics

inc	\rangle	\rangle	5	\rangle	\rangle	4	1	3	2	\rangle	8	3	\ldots
0 fby \circ	\rangle	\rangle	0										\ldots
$0=(0$ fby $\circ)+$ inc	\rangle	\rangle	5									\ldots	

node count_up(inc : int) returns (o : int)
let
$o=(0$ fby o) + inc; tel

$$
\begin{array}{ll}
\text { fby }(\rangle \cdot x s)(\rangle \cdot y s) & \equiv\rangle \cdot \text { fby xs ys } \\
\text { fby }\left(\left\langle v_{1}\right\rangle \cdot x s\right)\left(\left\langle v_{2}\right\rangle \cdot y s\right) & \equiv\left\langle v_{1}\right\rangle \cdot \mathrm{fby} 1 v_{2} x s \text { ys }
\end{array}
$$

fby operator semantics

inc	\rangle	\rangle	5	\rangle	\rangle	4	1	3	2	\rangle	8	3	\ldots
0 fby \circ	\rangle	\rangle	0	\rangle	\rangle	5	9	10	13	\rangle	15	23	\ldots
$0=(0$ fby 0$)+$ inc	\rangle	\rangle	5	\rangle	\rangle	9	10	13	15	\rangle	23	26	\ldots

```
node count_up(inc : int)
returns (o : int)
let
    \(o=(0\) fby o) \(+i n c ;\)
tel
```


fby operator semantics

inc	\rangle	\rangle	5	\rangle	\rangle	4	1	3	2	\rangle	8	3	\ldots
0 fby \circ	\rangle	\rangle	0	\rangle	\rangle	5	9	10	13	\rangle	15	23	\ldots
$0=(0$ fby 0$)+$ inc	\rangle	\rangle	5	\rangle	\rangle	9	10	13	15	\rangle	23	26	\ldots

node count_up(inc : int) returns (o : int)
let
o = (0 fby o) + inc;
tel
fby $(\rangle \cdot x s)(\rangle \cdot y s) \quad \equiv\rangle \cdot f b y x s y s$
fby $\left(\left\langle v_{1}\right\rangle \cdot x s\right)\left(\left\langle v_{2}\right\rangle \cdot y s\right) \equiv\left\langle v_{1}\right\rangle \cdot f b y 1 v_{2} x s$ ys
fby1 $v_{0}(\langle \rangle \cdot x s)(\langle \rangle \cdot y s) \quad \equiv\langle \rangle \cdot f b y 1 v_{0} x s$ ys
fby1 $v_{0}\left(\left\langle v_{1}\right\rangle \cdot x s\right)\left(\left\langle v_{2}\right\rangle \cdot y s\right) \equiv\left\langle v_{0}\right\rangle \cdot f b y 1 v_{2} x s$ ys

$$
\frac{G, H, b s \vdash e s_{0} \Downarrow\left[x s_{i}\right]^{i} \quad G, H, b s \vdash e s_{1} \Downarrow\left[y s_{i}\right]^{i} \quad \forall i, \text { fby } x s_{i} y s_{i} \equiv v s_{i}}{G, H, b s \vdash e s_{0} \mathrm{fby} e s_{1} \Downarrow\left[v s_{i}\right]^{i}}
$$

Stream semantics of switch blocks

```
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
        switch step
        | true do
        \(\mathrm{mA}=\) not (last mB);
        \(\mathrm{mB}=\) last mA;
    | false do (mA, mB) = (last mA, last mB)
    end;
    last mA = true;
    last mB = false;
tel
\begin{tabular}{l|c} 
step & \(\ldots\) \\
\hline last \(m A\) & \(\ldots\) \\
last \(m B\) & \(\ldots\) \\
\hline\(m A\) & \(\ldots\) \\
\(m B\) & \\
\multicolumn{2}{c|}{ Basile Pesin }
\end{tabular}

\section*{Stream semantics of switch blocks}
```

node drive_sequence(step : bool)
returns (mA, mB : bool)
let
switch step
| true do
$\mathrm{mA}=$ not (last mB);
$\mathrm{mB}=$ last mA ;
| false do (mA, mB) = (last mA, last mB)
end;
last mA = true;
last mB = false;
tel

step	\ldots
last $m A$	\ldots
last $m B$	\ldots
$m A$	\ldots
$m B$	\ldots

Stream semantics of switch blocks

```
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
        switch step
        | true do
            \(\mathrm{mA}=\) not (last mB );
            \(\mathrm{mB}=\) last mA ;
                when \({ }^{C}(\langle \rangle \cdot x s)(\langle \rangle \cdot c s) \equiv\langle \rangle \cdot\) when \({ }^{C} x s c s\)
                when \({ }^{C}(\langle\boldsymbol{v}\rangle \cdot x s)(\langle C\rangle \cdot c s) \equiv\langle\boldsymbol{v}\rangle \cdot\) when \(^{C}\) xs \(c s\)
                    when \({ }^{C}(\langle v\rangle \cdot x s)\left(\left\langle C^{\prime}\right\rangle \cdot c s\right) \equiv\langle \rangle \cdot\) when \(^{C} x s c s\)
        | false do (mA, mB) = (last mA, last mB)
        end;
        \(\begin{array}{ll}\text { last } m A=\text { true; } \\ \text { last } \mathrm{mB} & =\text { false; }\end{array} \quad \underline{G, H, b s \vdash e \Downarrow[c s]} \quad \forall i, G\), when \({ }^{C_{i}}(H, b s) c s \vdash b l k s_{i}\)
                        \(G, H, b s \vdash\) switch \(e\left[C_{i} \text { do } b l k s_{i}\right]^{i}\) end
\begin{tabular}{l|c} 
step & \(\ldots\) \\
\hline last \(m A\) & \(\ldots\) \\
last \(m B\) & \(\ldots\) \\
\hline\(m A\) & \(\ldots\) \\
\(m B\) & \(\ldots\)
\end{tabular}

\section*{Stream semantics of switch blocks}


\section*{Stream semantics of switch blocks}


\section*{Stream semantics of switch blocks}
```

```
node drive_sequence(step : bool)
```

```
node drive_sequence(step : bool)
returns (mA, mB : bool)
returns (mA, mB : bool)
let
let
        switch step
        switch step
        | true do
        | true do
            mA = not (last mB);
            mA = not (last mB);
            mB = last mA;
            mB = last mA;
        | false do (mA, mB) = (last mA, last mB)
        | false do (mA, mB) = (last mA, last mB)
        end;
```

```
        end;
```

```


```

```
tel
```

```
```

```
tel
```

```
\[
\text { when }{ }^{C}(\langle \rangle \cdot x s)(\langle \rangle \cdot c s) \quad \equiv\langle \rangle \cdot \text { when }^{C} x s c s
\]
\[
\text { when }{ }^{C}(\langle v\rangle \cdot x s)(\langle C\rangle \cdot c s) \equiv\langle v\rangle \cdot \text { when }^{C} x s c s
\]
\[
\text { when }^{C}(\langle v\rangle \cdot x s)\left(\left\langle C^{\prime}\right\rangle \cdot c s\right) \equiv\langle \rangle \cdot \text { when }^{C} x s c s
\]
\(\frac{G, H, b s \vdash e \Downarrow[c s] \quad \forall i, G, \text { when }^{C}(H, b s) c s \vdash b l k s_{i}}{G, H, b s \vdash \operatorname{switch} e\left[C_{i} \text { do } b l k s_{i}\right]^{i} \text { end }}\)
\begin{tabular}{l|ccccccccccccccc} 
step & F & T & T & F & F & T & F & T & F & T & F & T & F & F & T \\
\(\ldots\) \\
\hline last mA & T & T & T & F & F & F & F & F & T & T & T & T & F & F & F \\
\(\ldots\) \\
last mB & F & F & T & T & T & T & F & F & F & F & T & T & T & T & T \\
\(\ldots\) \\
mA & T & T & F & F & F & F & F & T & T & T & T & F & F & F & F \\
mB & F & T & T & T & T & F & F & F & F & T & T & T & T & T & F \\
& \(\ldots\)
\end{tabular}
```

last mB = false;

```
```

last mB = false;

```

\section*{Stream semantics of reset blocks and state machines}
```

mask}\mp@subsup{k}{\mp@subsup{k}{}{\prime}}{k}(\textrm{F}\cdotrs)(sv\cdotxs)\equiv(\mathrm{ if }\mp@subsup{k}{}{\prime}=k\mathrm{ then sv else <>) . mask }\mp@subsup{k}{\mp@subsup{k}{}{\prime}}{k}rs x
mask}\mp@subsup{k}{\mp@subsup{k}{}{\prime}}{k}(\textrm{T}\cdotrs)(sv\cdotxs)\equiv(\mathrm{ if }\mp@subsup{k}{}{\prime}+1=k\mathrm{ then sv else<>) . mask}\mp@subsup{k}{\mp@subsup{k}{}{\prime}+1}{k}rs x
Bourke, Brun, and Pouzet (2020): Mechanized Semantics and Verified
Compilation for a Dataflow Synchronous Language with Reset

```
\(G, H, b s \vdash e \Downarrow[y s] \quad\) bools-of \(y s \equiv r s\)
\(\forall k, G\), mask \(^{k} r s(H, b s) \vdash b l k s\)
\(G, H, b s \vdash\) reset \(b l k s\) every \(e\)
- reset block \(\mapsto\) mask operator

\section*{Stream semantics of reset blocks and state machines}
\[
\begin{aligned}
& \operatorname{mask}_{k^{\prime}}^{k}(\mathrm{~F} \cdot r s)(s v \cdot x s) \equiv\left(\text { if } k^{\prime}=k \text { then sv else 〈〉) } \cdot \operatorname{mask}_{k^{\prime}}^{k} r s x s\right. \\
& \text { mask }_{k^{\prime}}^{k}(\mathrm{~T} \cdot r s)(s v \cdot x s) \equiv\left(\text { if } k^{\prime}+1=k \text { then sv else 〈>) } \operatorname{mask}_{k^{\prime}+1}^{k} r s x s\right. \\
& {\left[\begin{array}{l}
\text { Bourke, Brun, and Pouzet (2020): Mechanized Semantics and Verified } \\
\text { Compilation for a Dataflow Synchronous Language with Reset }
\end{array}\right]}
\end{aligned}
\]
\(G, H, b s \vdash e \Downarrow[y s] \quad\) bools－of \(y s \equiv r s\)
\(\forall k, G\), mask \(^{k} r s(H, b s) \vdash b l k s\)
\(G, H, b s \vdash\) reset \(b l k s\) every \(e\)
－reset block \(\mapsto\) mask operator
－state machines \(\mapsto\) select operator


\section*{Stream semantics of reset blocks and state machines}
\[
\begin{aligned}
& \operatorname{mask}_{k^{\prime}}^{k}(\mathrm{~F} \cdot r s)(s v \cdot x s) \equiv\left(\text { if } k^{\prime}=k \text { then sv else }\langle \rangle\right) \cdot \operatorname{mask}_{k^{\prime}}^{k} r s \times s \\
& \operatorname{mask}_{k^{\prime}}^{k}(\mathrm{~T} \cdot r S)(s V \cdot x S) \equiv\left(\text { if } k^{\prime}+1=k \text { then } s v \text { else }\langle \rangle\right) \cdot \text { mask }_{k^{\prime}+1}^{k} r s \times s \\
& {\left[\begin{array}{l}
\text { Bourke, Brun, and Pouzet }(2020): \text { Mechanized Semantics and Verified } \\
\text { Compilation for a Dataflow Synchronous Language with Reset }
\end{array}\right]}
\end{aligned}
\]
\[
\begin{gathered}
G, H, b s \vdash e \Downarrow[y s] \quad \text { bools-of } y s \equiv r s \\
\forall k, G, \text { mask }^{k} r s(H, b s) \vdash b l k s \\
G, H, b s \vdash \operatorname{reset} b l k s \text { every } e
\end{gathered}
\]
- reset block \(\mapsto\) mask operator
- state machines \(\mapsto\) select operator


\section*{Proving semantic meta-properties}

Prove properties of the semantic model:
- Determinism of the semantics:
if \(\quad G \vdash f(x s) \Downarrow y s_{1} \quad\) and \(\quad G \vdash f(x s) \Downarrow y s_{2} \quad\) then \(y s_{1} \equiv y s_{2}\)

Prove properties of the semantic model:
- Determinism of the semantics: if \(\quad G \vdash f(x s) \Downarrow y s_{1} \quad\) and \(\quad G \vdash f(x s) \Downarrow y s_{2} \quad\) then \(y s_{1} \equiv y s_{2}\)
- Clock-system correctness: if \(\Gamma \vdash e: c k\) and \(G, H, b s \vdash e \Downarrow v s\) then \(H, b s \vdash c k \Downarrow\) (clock-of vs)

\section*{Proving semantic meta-properties}

Prove properties of the semantic model:
- Determinism of the semantics: if \(\quad G \vdash f(x s) \Downarrow y s_{1} \quad\) and \(\quad G \vdash f(x s) \Downarrow y s_{2} \quad\) then \(y s_{1} \equiv y s_{2}\)
- Clock-system correctness: if \(\Gamma \vdash e: c k\) and \(G, H, b s \vdash e \Downarrow v s\) then \(H, b s \vdash c k \Downarrow\) (clock-of vs)

Proof by induction on the syntax, inversion of the semantics:
- variable: inverting \(G, H, b s \vdash x \Downarrow[v s]\) tells us \(H(x) \equiv v s\). What now ?
- ...

\section*{Dependency Analysis}

Consider a program with the following definitions:
- \(\mathrm{x}=\mathrm{x}\); admits all value
- \(\mathrm{x}=\mathrm{x}+1\); admits no value

Consider a program with the following definitions:
- \(\mathrm{x}=\mathrm{x}\); admits all value
- \(\mathrm{x}=\mathrm{x}+1\); admits no value

Not possible to prove any property of the stream of x .
We can only reason on program without dependency cycle.

Consider a program with the following definitions:
- \(\mathrm{x}=\mathrm{x}\); admits all value
- \(\mathrm{x}=\mathrm{x}+1\); admits no value

Not possible to prove any property of the stream of x .
We can only reason on program without dependency cycle.

Solution: dependency analysis [Halbwachs, Caspi, Raymond, and Pilaud (1991): The
- node-by-node graph analysis (no type system [llaca and Pouzet (2001): Modular Causality in a \(]\) )

Consider a program with the following definitions:
- \(\mathrm{x}=\mathrm{x}\); admits all value
- \(\mathrm{x}=\mathrm{x}+1\); admits no value

Not possible to prove any property of the stream of x .
We can only reason on program without dependency cycle.

Solution: dependency analysis [Halbwachs, Caspi, Raymond, and Pilaud (1991): The
- node-by-node graph analysis (no type system [ \(\left.\begin{array}{c}\text { Cuoq and Pouret (2001): Modular Causality in a } \\ \text { Synchronous Stream Language }\end{array}\right]\) )
- extended to handle control blocks (using labels)

\section*{Dependency Analysis}

Consider a program with the following definitions:
- \(\mathrm{x}=\mathrm{x}\); admits all value
- \(\mathrm{x}=\mathrm{x}+1\); admits no value

Not possible to prove any property of the stream of x .
We can only reason on program without dependency cycle.

Solution: dependency analysis [Halbwachs, Caspi, Raymond, and Pilaud (1991): The
- node-by-node graph analysis (no type system [ \(\left.\begin{array}{l}\text { Cuoq and Pouzet (2001): Modular Causality in a } \\ \text { Synchronous Stream Language }\end{array}\right]\) )
- extended to handle control blocks (using labels)
- verified graph analysis algorithm: produces a witness of acyclicity

\section*{Dependency Analysis}

Consider a program with the following definitions:
- \(\mathrm{x}=\mathrm{x}\); admits all value
- \(\mathrm{x}=\mathrm{x}+1\); admits no value

Not possible to prove any property of the stream of x .
We can only reason on program without dependency cycle.

Solution: dependency analysis [Halbwachs, Caspi, Raymond, and Pilaud (1991): The
- node-by-node graph analysis (no type system [ \(\left[\begin{array}{l}\text { Cuog and Pouret (2001): Modular Causality in a } \\ \text { Synchronous Stream Language }\end{array}\right]\) )
- extended to handle control blocks (using labels)
- verified graph analysis algorithm: produces a witness of acyclicity
- Used to prove properties of the semantics (clock-system correctness, determinism)

\section*{Instrumented Semantic Model}


\section*{Instrumented Semantic Model}


\section*{Compilation of State Machines and Switch Blocks}


\section*{Compilation of State Machines}
```

node feed_pause(pause : bool) returns (ena, step : bool)
var time : int;
let
reset
time = count_up(50)
every (false fby step);
automaton initially Feeding
state Feeding do
ena = true;
automaton initially Starting
state Starting do
step = true fby false
unless time >= 750 then Moving
state Moving do
step = true fby false
unless time >= 500 then Moving
end;
unless pause then Holding
end

```
```

state Holding do

```
state Holding do
    step = false;
    step = false;
    automaton initially Waiting
    automaton initially Waiting
        state Waiting do
        state Waiting do
            ena = true
            ena = true
    unless time >= 500 then Modulating
    unless time >= 500 then Modulating
    * state Modulating do 
    * state Modulating do 
end;
end;
unless
unless
    | not pause and time >= 750 then Feeding
    | not pause and time >= 750 then Feeding
    | not pause continue Feeding
```

 | not pause continue Feeding
    ```

\section*{Compilation of State Machines}
```

var time
let

```
```

reset

```
```

reset

```
automaton initially Feeding
    state Feeding do
    automaton initially Starting
        state Starting do
            step \(=\) true fby false
        unless time >= 750 then Moving
        state Moving do
            step \(=\) true fby false
        unless time >= 500 then Moving
    end;
```

state Holding do
step = false;
automaton initially Waiting
state Waiting do
ena = true
unless time >= 500 then Modulating
state Modulating do
ena = pwm(true)
end;
unless
| not pause and time >= 750 then Feeding
not pause continue Feeding

```

\section*{Compilation of State Machines}
```

automaton initially Starting
state Starting do
step = true fby false
unless time >= 750 then Moving
state Moving do
step = true fby false
unless time >= 500 then Moving
end

```

\section*{Compilation of State Machines}
automaton initially Starting
```

state Starting do
step = true fby false
unless time >= 750 then Moving

```
state Moving do
    step \(=\) true \(f b y\) false
unless time >= 500 then Moving
    end
Colaco, Pagano, and Pouzet (2005): A Conservative Extension
Colaço, Pagano, and Pouzet with State Machines



\section*{Compilation of State Machines}
automaton initially Starting
```

state Starting do
step = true fby false
unless time >= 750 then Moving

```
state Moving do
    step \(=\) true \(f\) by false
unless time >= 500 then Moving
    end

Colaço, Pagano, and Pouzet (2005): A Conservative Extension of Synchronous Data-flow with State Machines

```

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)
every pres
Moving do ...
end;
switch st
| Starting do
reset
step = true fby false
every res
| Moving do ...
end
tel

```

\section*{Compilation of State Machines}
automaton initially Starting
```

state Starting do
step = true fby false
unless time >= 750 then Moving

```
state Moving do
    step \(=\) true \(f\) by false
unless time >= 500 then Moving
end

Colaço, Pagano, and Pouzet (2005): A Conservative Extension of Synchronous Data-flow with State Machines

```

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res)
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)
every pres
Moving do ...
end;
switch st
| Starting do
reset
step = true fby false
every res
| Moving do ...
end
tel

```

\section*{Compilation of State Machines}
automaton initially Starting
```

state Starting do
step = true fby false
unless time >= 750 then Moving

```
state Moving do
    step \(=\) true \(f\) by false
unless time >= 500 then Moving
    end

Colaço, Pagano, and Pouzet (2005): A Conservative Extension of Synchronous Data-flow with State Machines

```

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)
every pres
Moving do ...
end;
switch st
| Starting do
reset
step = true fby false
every res
| Moving do ...
end
tel

```

\section*{Compilation of State Machines}
automaton initially Starting
```

state Starting do
step = true fby false
unless time >= 750 then Moving

```
state Moving do
    step \(=\) true \(f\) by false
unless time >= 500 then Moving
    end

Colaço, Pagano, and Pouzet (2005): A Conservative Extension of Synchronous Data-flow with State Machines

```

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
then (Moving, true)
else (Starting, false)
every pres
Moving do ...
end;
switch st
| Starting do
reset
step = true fby false
every res
| Moving do ...
end
tel

```

\section*{Compilation of State Machines}
automaton initially Starting

unless time >= 750 then Moving
state Moving do
step \(=\) true \(f\) by false
```

unless time >= 500 then Moving

```
end
Colaço, Pagano, and Pouzet (2005): A Conservative Extension of Synchronous Data-flow with State Machines

```

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)
every pres
Moving do ...
end;
switch st
| Starting do
reset
step = true fby false
every res
| Moving do ...
end
tel

```

\section*{Compilation of State Machines}
automaton initially Starting
```

state Starting do
step = true fby false
unless time >= 750 then Moving

```
state Moving do
    step \(=\) true \(f\) by false
unless time >= 500 then Moving
end

Colaço, Pagano, and Pouzet (2005): A Conservative Extension of Synchronous Data-flow with State Machines

```

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res)
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)
every pres
Moving do ...
end;
switch st
| Starting do
reset
step = true fby false
every res
| Moving do ...
end
tel

```

\section*{Generating Fresh Identifiers during Compilation}


\section*{Generating Fresh Identifiers during Compilation}
```

generating new identifiers? varrpst, pres, st, res, let
generating new identifiers? (pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)
every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false
every res
| Moving do ...
end
tel

```

\section*{}

\section*{Generating Fresh Identifiers during Compilation}


\section*{Generating Fresh Identifiers during Compilation}


\section*{000000000000000}

\section*{Generating Fresh Identifiers during Compilation}


\section*{Compilation of State Machines - Coq Implementation}

Fixpoint auto_block (blk: block) : Fresh block := mot~h hilr mith
```

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)
every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false
every res
| Moving do ...
end
tel

```

\section*{Compilation of State Machines - Coq Implementation}
```

Fixpoint auto_block (blk: block) : Fresh block :=
match blk with

```
~••••
```

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)
every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false
every res
| Moving do ...
end
tel

```

\section*{Compilation of State Machines - Coq Implementation}
```

Fixpoint auto_block (blk: block) : Fresh block :=
match blk with
...
Bauto Strong ck (_, oth) states }
dojpst \leftarrow% fresh_ident; do pres \leftarrow fresh_ident;

```
```

var pst, pres, st, res. let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)
every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false
every res
| Moving do
end
tel

```

Common monadic notation:
\[
\text { do } \mathrm{x} \leftarrow \mathrm{e} 1 ; \mathrm{e} 2 \sim \text { let } \mathrm{x}:=\mathrm{e} 1 \text { in e2 }
\]

\section*{Compilation of State Machines - Coq Implementation}
```

Fixpoint auto_block (blk: block) : Fresh block :=
match blk with
...
Bauto Strong ck (_, oth) states }
do pst }\leftarrow\mathrm{ fresh_ident; do pres }\leftarrow fresh_ident
do st \leftarrow fresh_ident; do res }\leftarrow fresh_ident;'
let stateq:=
Beq ([pst; pres],
[Efby [Eenum oth; Eenum false]
[Evar st; Evar res]]) in
\prime, ,", `, - い

```
```

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)
every pres
Moving do ...
end;
switch st
| Starting do
reset
step = true fby false
every res
| Moving do ...
end
tel

```

\section*{Compilation of State Machines - Coq Implementation}
```

Fixpoint auto_block (blk: block) : Fresh block :=
match blk with
| ...
Bauto Strong ck (_, oth) states }
do pst }\leftarrow\mathrm{ fresh_ident; do pres }\leftarrow fresh_ident
do st }\leftarrow\mathrm{ fresh_ident; do res }\leftarrow fresh_ident;
let stateq:=
Beq ([pst; pres],
[Efby [Eenum oth; Eenum false]
[Evar st; Evar res]]) in
let branches := map (fun '((e, _), (unl, _)) =
let transeq := Beq ([st; res], trans_expuml e) in
(e, [Breset [transeq] (Evar pres)])) states in
let sw1 := Bswitch (Evar pst) branches in

```
```

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)
every pres
Moving do ...
end;
switch st
| Starting do
reset
step = true fby false
every res
Moving do ...
end
tel

```

\section*{Compilation of State Machines - Coq Implementation}
```

Fixpoint auto_block (blk: block) : Fresh block :=
match blk with
| ...
Bauto Strong ck (_, oth) states }
do pst }\leftarrow\mathrm{ fresh_ident; do pres }\leftarrow fresh_ident
do st \leftarrow fresh_ident; do res }\leftarrow fresh_ident;'
let stateq:=
Beq ([pst; pres],
[Efby [Eenum oth; Eenum false]
[Evar st; Evar res]]) in
let branches := map (fun '((e, _), (unl, _)) =
let transeq := Beq ([st; res], trans_exp unl e) in
(e, [Breset [transeq] (Evar pres)])) states in
let sw1 := Bswitch (Evar pst) branches in
do branches }\leftarrow\operatorname{mmap}(fun '((e, _), (_, (blks, _))) =>
do blks' \leftarrow mmmap auto_block blks;
ret (e, ([Breset blks'(Evar res)]))) states;
let sw2 := Bswitch (Evar st) branches in

```
```

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)
every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false
every res
| Moving do ...
end
tel

```

\section*{Compilation of State Machines - Coq Implementation}
```

Fixpoint auto_block (blk: block) : Fresh block :=
match blk with
| ...
Bauto Strong ck (_, oth) states }
do pst }\leftarrow fresh_ident; do pres \leftarrow fresh_ident
do st }\leftarrow\mathrm{ fresh_ident; do res }\leftarrow fresh_ident;'
let stateq:=
Beq ([pst; pres],
[Efby [Eenum oth; Eenum false]
[Evar st; Evar res]]) in
let branches := map (fun '((e, _), (unl, _)) =
let transeq := Beq ([st; res], trans_exp unl e) in
(e, [Breset [transeq] (Evar pres)])) states in
let sw1 := Bswitch (Evar pst) branches in
do branches \leftarrow mmap (fun '((e, _), (_, (blks, _))) =
do blks' \leftarrow mmap auto_block blks;
ret (e, ([Breset blks' (Evar res)]))) states;
let sw2 := Bswitch (Evar st) branches in
ret (Blocal [pst; pres; st; res] [stateq; sw1; sw2])

```
```

var pst, pres, st, res; let

```
var pst, pres, st, res; let
    (pst, pres) = (Starting, false) fby (st, res);
    (pst, pres) = (Starting, false) fby (st, res);
    switch pst
    switch pst
    | Starting do
    | Starting do
        reset
        reset
            (st, res) =
            (st, res) =
                if time >= 750
                if time >= 750
                then (Moving, true)
                then (Moving, true)
                else (Starting, false)
                else (Starting, false)
        every pres
        every pres
        Moving do ...
        Moving do ...
    end;
    end;
    switch st
    switch st
    | Starting do
    | Starting do
        reset
        reset
                step = true fby false
                step = true fby false
        every res
        every res
    | Moving do ...
    | Moving do ...
    end
    end
tel
```

tel

```

\section*{Compilation of State Machines - Proof Intuition}

\section*{Lemma (State machines correctness)}
if \(G, H \vdash b / k\) then \(G, H \vdash\lfloor b / k\rfloor\)


\section*{Compilation of State Machines - Proof Intuition}

\section*{Lemma (State machines correctness)}
\[
\text { if } G, H \vdash b / k \text { then } G, H \vdash\lfloor b / k\rfloor
\]


Works well:
- local transformation and reasoning
- correspondence between select, mask and when

\section*{Compilation of State Machines - Proof Intuition}

\section*{Lemma (State machines correctness)}
\[
\text { if } G, H \vdash b / k \text { then } G, H \vdash\lfloor b / k\rfloor
\]

Works well:
- local transformation and reasoning
- correspondence between select, mask and when

Works less well:
- static invariants (typing, clock-typing, ...)
- fresh identifiers

\section*{Compilation of State Machines－Coq Proof}
```

Lemma auto_block_sem : \forall blk rty rck Hf bs blk' tys st st`,
(}\forall\textrm{x},\mathrm{ IsVar 「ty }\textrm{x}->\mathrm{ AtomOrGensym elab_prefs }\textrm{x})
(}\forall\textrm{x},\mathrm{ IsVar 「ck x }->\mathrm{ IsVar 「ty x) }
(}\forall\textrm{x},\mathrm{ IsLast 「ck x }->\mathrm{ IsLast 「ty x)
NOD,Lsals (List map fst rty) blk
Goodocals elab prefs blk
GoodLoc
wt_block G1 「ty blk }
wc_block G1 「ck blk }
dom_ub Hi 「ty }
sc_vars rck Hi bs }

```

```

 auto_block blk st = (blk', tys, st') }
 sem_block_ck G2 Hi bs blk'
 Proof.
induction blk using block_ind 2;

```

\section*{Compilation of State Machines－Coq Proof}

Lemma auto＿block＿sem ：\(\forall\) blk 「ty 「ck Hi bs blk＇tys st st＇，
（ \(\forall \times\) ，IsVar 「ty \(x \rightarrow\) AtomOrGensym elab＿prefs \(x\) ）
（ \(\forall \mathrm{x}\), IsVar 「ck \(\mathrm{x} \rightarrow\) IsVar 「ty x\() \rightarrow\)
\((\forall \times\) ，IsLast 「ck \(x \rightarrow\) IsLast 「ty x\() \rightarrow\) NoDupLocals（List．map fst 「ty）blk \(\rightarrow\) GoodLocals elab＿prefs blk＊ wt＿block \(G_{1}\) 「ty blk \(\rightarrow\)
wc＿block \(G_{1}\) 「ck blk \(\rightarrow\)
dom＿ub Hi rty \(\rightarrow\)
sem＿block＿ck \(G_{1}\) Hi bs blk \(\rightarrow\)
auto＿block blk st \(=\)（blk＇，tys，st＇）
sem＿block＿ck \(\mathrm{G}_{2} \mathrm{Hi}\) bs blk＇．

\section*{Lemma（State machines correctness）}
if \(G, H \vdash b l k\) then \(G, H \vdash\lfloor b l k\rfloor\)

\section*{Compilation of State Machines－Coq Proof}

dom＿ub Hi 「ty \(\rightarrow\)
sc＿vars 「ck Hi bs \(\rightarrow\)
sem＿block＿ck \(G_{1}\) Hi bs blk \(\rightarrow\)
auto＿block blk st \(=\left(b l k^{\prime}\right.\), tys，st＇\() \rightarrow\) sem＿block＿ck \(G_{2} \mathrm{Hi}\) bs blk＇．
Proof．
induction blk using block＿ind \({ }_{2}\) ；

\section*{Lemma（State machines correctness）}
if \(G, H \vdash b l k\) then \(G, H \vdash\lfloor b / k\rfloor\)

\section*{Compilation of State Machines－Coq Proof}
```

Lemma auto_block_sem : \forall blk rty rck Hf bs blk' tys st stl,
(}\forall\textrm{x},\mathrm{ IsVar 「ty x }->\mathrm{ AtomOrGensym elab_prefs x)
(}\forall\times,\mathrm{ , IsVar 「ck x }->\mathrm{ IsVar 「ty x) }
(}\forall\textrm{x},\mathrm{ IsLast 「ck x }->\mathrm{ IsLast 「ty x)
NoDupLocals (List.map fst rty) blk *
GoodLocals elab prefs blk
wt_block G1 「ty blk }
wc_block G1 「ck blk ->
dom_ub Hi rty }
sc vars 「ck Hi bs
sem_block_ck G1 Hi bs blk }
auto_block blk st = (blk', tys, st') }
sem_block_ck G2 Hi bs blk'
Proof.
induction blk using block_ind}2
Lemma auto block sem ：\forall blk rty rck Hi bs blk＇tys st stº
（ \forall x，IsVar 「ty $\mathrm{x} \rightarrow$ AtomOrGensym elab＿prefs x ）\rightarrow
x，IsVar 「ck $x \rightarrow$ IsVar 「ty x$) \rightarrow$
NoDupLocals（List．map fst rty）blk \rightarrow GoodLocals elab prefs blk \rightarrow wt＿block G_{1} 「ty blk \rightarrow
dom＿ub Hi rty \rightarrow
sem＿block＿ck G_{1} Hi bs blk \rightarrow
auto＿block blk st $=\left(b l k^{\prime}\right.$, tys，st＇$) \rightarrow$ sem＿block＿ck $G_{2} \mathrm{Hi}$ bs blk＇
induction blk using block＿ind 2

```

\section*{Lemma（State machines correctness）}
if \(G, H \vdash b / k\) then \(G, H \vdash\lfloor b / k\rfloor\)

\section*{Compilation of State Machines－Coq Proof}

Lemma auto＿block＿sem ：\(\forall\) blk 「ty 「ck Hi bs blk＇tys st st＇，
\((\forall x\) ，IsVar \(\Gamma\) ty \(x \rightarrow\) AtomOrGensym elab＿prefs \(x) \rightarrow\)
\((\forall \times\), IsVar 「ck \(x \rightarrow\) IsVar 「ty x\() \rightarrow\)
\((\forall \times\) ，IsLast 「ck \(x \rightarrow\) IsLast 「ty x\() \rightarrow\)
NoDupLocals（List．map fst 「ty）blk \(\rightarrow\) GoodLocals elab prefs blk \(\rightarrow\)
wt＿block \(G_{1}\) 「ty blk \(\rightarrow\)
wc＿block \(G_{1}\) 「ck blk \(\rightarrow\)
dom＿ub Hi 「ty \(\rightarrow\)
sc＿vars 「ck Hi bs \(\rightarrow\)
sem＿block＿ck \(G_{1}\) Hi bs blk \(\rightarrow\)
auto＿block blk st \(=\left(b l k^{\prime}\right.\), tys，st＇\() \rightarrow\) sem＿block＿ck \(G_{2} \mathrm{Hi}\) bs blk＇．
Proof．
induction blk using block＿ind 2 ；

\section*{Lemma（State machines correctness）}
if \(G, H \vdash b l k\) then \(G, H \vdash\lfloor b l k\rfloor\)





\section*{Compilation of Switch Blocks}
```

switch st
| Starting do
reset
step = true fby false
every res
| Holding do ...

```
```

resS = res when (st=Starting);

```
resS = res when (st=Starting);
resM = res when (st=Moving);
resM = res when (st=Moving);
step = merge st (Starting => stepS) (Moving => stepM);
step = merge st (Starting => stepS) (Moving => stepM);
reset
reset
    stepS = true when (st=Starting) fby false when (st=Starting)
    stepS = true when (st=Starting) fby false when (st=Starting)
every resS;
```

every resS;

```
end
Colaço, Pagano, and Pouzet (2005): A Conservative Extension
Colaço, Pagano, and Pouzet (2th State Machines
of Synchronous Data-flow with


\section*{Compilation of Switch Blocks}
```

switch st
| Starting do
reset
step = true fby false
every res
| Holding do ...
end

```
```

resS = res when (st=Starting);
resM = res when (st=Moving);
step = merge st (Starting => stepS) (Moving => stepM);
reset
stepS = true when (st=Starting) fby false when (st=Starting)
every resS

```

Colaço, Pagano, and Pouzet (2005): A Conservative Extension
of Synchronous Data-flow with State Machines

- sampling explicited by when

\section*{Compilation of Switch Blocks}
```

switch st
| Starting do
reset
step = true fby false
every res
| Holding do ...
end

```
```

resS = res when (st=Starting);
resM = res when (st=Moving);
step = merge st (Starting => stepS) (Moving => stepM);
reset
stepS = true when (st=Starting) fby false when (st=Starting)
every resS;

```
Colaço, Pagano, and Pouzet (2005): A Conservative Extension
\(\left[\begin{array}{l}\text { Colaço, Pagano, and Pouzet (2005): A Conserva } \\ \text { of Synchronous Data-flow with State Machines }\end{array}\right.\)


- sampling explicited by when
- choice explicited by merge

\section*{Compilation of Switch Blocks}
```

```
switch st
```

```
switch st
| Starting do
| Starting do
    reset
    reset
            step = true fby false
            step = true fby false
        every res
        every res
| Holding do ...
| Holding do ...
end
```

```
end
```

```
```

resS = res when (st=Starting);

```
resS = res when (st=Starting);
resM = res when (st=Moving);
resM = res when (st=Moving);
step = merge st (Starting => stepS) (Moving => stepM);
step = merge st (Starting => stepS) (Moving => stepM);
reset
reset
    stepS = true when (st=Starting) fby false when (st=Starting)
    stepS = true when (st=Starting) fby false when (st=Starting)
every resS;
```

every resS;

```
Colaço, Pagano, and Pouzet (2005): A Conservative Extension
\(\left[\begin{array}{l}\text { Colaço, Pagano, and Pouzet (2005): A Conserva } \\ \text { of Synchronous Data-flow with State Machines }\end{array}\right.\)

- sampling explicited by when
- choice explicited by merge
- constants are also sampled

\section*{Compilation of Switch Blocks - Proof Intuition}

\section*{Lemma (Switch correctness)}
if \(G, H_{1} \vdash b l k\) and \(H_{1} \sqsubseteq_{\sigma} H_{2}\) then \(G, H_{2} \vdash\lfloor b l k\rfloor_{\sigma, c k}\)

\section*{Compilation of Switch Blocks - Proof Intuition}

\section*{Lemma (Switch correctness)}
\[
\text { if } G, H_{1} \vdash b l k \quad \text { and } \quad H_{1} \sqsubseteq_{\sigma} H_{2} \text { then } G, H_{2} \vdash\lfloor b l k\rfloor_{\sigma, c k}
\]

Works less well:
- reasoning is not local: renaming propagates to sub-blocks
- static invariants, in particular clock-typing

\section*{Compilation of Switch Blocks - Proof Intuition}

\section*{Lemma (Switch correctness)}
if \(G, H_{1} \vdash b l k\) and \(H_{1} \sqsubseteq_{\sigma} H_{2}\) then \(G, H_{2} \vdash\lfloor b l k\rfloor_{\sigma, c k}\)

Works well:
- correspondence between switch and when/merge: implicit to explicit sampling
- less cases to handle

Works less well:
- reasoning is not local: renaming propagates to sub-blocks
- static invariants, in particular clock-typing

Compilation to Imperative Code


Compilino Last Variables
```

switch step
| true do
mA = not (last mB);
mB = last mA;
| false do (mA, mB) = (last mA, last mB)
end;
last mA = true;
last mB = false;

```


\section*{Compiling Last Variables}
```

switch step
| true do
mA = not (last mB);
mB = last mA;
| false do (mA, mB) = (last mA, last mB)
end;
last mA = true;
last mB = false;
|
switch step
| true do
mA = not last$mB;
 mB = last$mA;
| false do (mA, mB) = (last$mA, last$mB)
end;
last$mA = true fby mA;
last$mB = false fby mB;

```

\section*{Compiling Last Variables}
```

switch step
| true do
mA = not (last mB);
mB = last mA;
| false do (mA, mB) = (last mA, last mB)
end;
last mA = true;
last mB = false;

```
switch step \{
    | true =>
    mA := not state(last\$mB);
    mB := state(last\$mA)
switch step
| true do
    mA = not last\$mB; -----------------mB \(:=\) state(last\$mB)
    \(\mathrm{mB}=\) last\$mA;
| false do (mA, mB) = (last\$mA, last\$mB)
end;
last \(\$ \mathrm{~mA}=\) true fby mA;
last\$mB = false fby mB;

\section*{Compiling Last Variables}
```

switch step
| true do
mA = not (last mB);
mB = last mA;
| false do (mA, mB) = (last mA, last mB)
end;
last mA = true;
last mB = false;

```
switch step \{
    | true =>
    mA := not state(last\$mB);
    mB := state(last\$mA)
switch step
| true do
    \(\mathrm{mA}=\) not last\$mB;
    \(\mathrm{mB}=\) last\$mA;
| false do (mA, mB) = (last\$mA, last\$mB)
end;
last \(\$ \mathrm{~mA}=\) true fby mA;
last\$mB = false fby mB;

\section*{Compiling Last Variables}
```

switch step

```
| true do
```

| true do
mA = not (last mB);
mA = not (last mB);
mB = last mA;
mB = last mA;
| false do (mA, mB) = (last mA, last mB)
| false do (mA, mB) = (last mA, last mB)
end;
end;
last mA = true;
last mA = true;
last mB = false;

```
```

last mB = false;

```
```

```
switch step {
```

switch step {
| true =>
| true =>
tmp := state(mA);
tmp := state(mA);
state(mA) := not state(mB);
state(mA) := not state(mB);
state(mB) := tmp
state(mB) := tmp
| false =>
| false =>
state(mA) := state(mA);
state(mA) := state(mA);
state(mA) := state (mA)
state(mA) := state (mA)
};
};
mA := state(last$mA);
mA := state(last$mA);
mB := state(last\$mB)

```
mB := state(last$mB)
```


Compiling Last Variables

```
switch step
| true do
    mA = not (last mB);
    mB = last mA;
| false do (mA, mB) = (last mA, last mB)
end;
last mA = true;
last mB = false;
```

 switch step \{
 | true =>
 tmp := state(mA);
 state (mA) := not state(mB);
 state (mB) := tmp
 | false => skip
$\mathrm{mA}:=$ state(last\$mA);
mB := state(last\$mB)

Main Correctness Theorem

```
Theorem behavior_asm:
    | G Gp P main ins outs,
        elab_declarations D = OK (exist _ G Gp) }
        compile D main = OK P }
        sem_node G main (pStr ins) (pStr outs) }
        wt_ins G main ins }
        wc_ins G main ins }
        \exists T, program_behaves (Asm.semantics P) (Reacts T)
            ^ bisim_IO G main ins outs T.
```


Theorem behavior_asm:

if typing/elaboration succeeds. . .
\forall D G Gp P main ins outs, elab_declarations $\mathrm{D}=\mathrm{OK}$ (exist _ G Gp) \rightarrow compile D main $=$ OK P \rightarrow
and compilation succeeds... sem_node G main (pStr ins) (pStr outs) \rightarrow wt_ins G main ins \rightarrow wc_ins G main ins \rightarrow
$\exists \mathrm{T}$, program_behaves (Asm.semantics P) (Reacts T)
\wedge bisim_IO G main ins outs T.

Main Correctness Theorem


```
Theorem behavior_asm:
if typing/elaboration succeeds. . .
\(\forall\) D G Gp P main ins outs, elab_declarations \(D=0\) (exist _ G Gp) \(\rightarrow\) and compilation succeeds. . . compile D main \(=\mathrm{OK} \mathrm{P} \rightarrow\)
``` \(\qquad\)
``` and there exists a sem_node \(G\) main ( \(p S t r\) ins) (pStr outs) \(\rightarrow\) dataflow semantics... \(\left.\begin{array}{l}\text { wt_ins G main ins } \rightarrow \\ \text { wc_ins G main ins } \rightarrow\end{array}\right\}\) and input streams are well-typed and well-clocked...
\(\exists \mathrm{T}\), program_behaves (Asm.semantics P) (Reacts T)
\(\wedge\) bisim_IO G main ins outs T.
                if typing/elaboration succeeds...
```


Theorem behavior_asm:

\forall D G Gp P main ins outs, elab_declarations $D=0 K$ (exist _ G Gp) \rightarrow and compilation succeeds. . . compile D main $=$ OK P \rightarrow \qquad and there exists a sem_node G main (pStr ins) (pStr outs) \rightarrow dataflow semantics... $\left.\begin{array}{l}\text { wt_ins G main ins } \rightarrow \\ \text { wc_ins G main ins } \rightarrow\end{array}\right\}$ and input streams are well-typed and well-clocked...
$\exists \mathrm{T}$, program_behaves (Asm.semantics P) (Reacts T)
\wedge bisim_IO G main ins outs T.
then the generated assembly produces an infinite trace
and the trace corresponds to the dataflow model.

Our contributions:

- a Coq-based semantics for the control blocks of Scade 6
- switch blocks
- reset blocks
- state machines
- last variables
- a verified dependency analysis used to prove meta-properties of the model
- a verified implementation of an efficient compilation scheme for these blocks

Conclusion

Our contributions:

- a Coq-based semantics for the control blocks of Scade 6
- switch blocks
- reset blocks
- state machines
- last variables
- a verified dependency analysis used to prove meta-properties of the model
- a verified implementation of an efficient compilation scheme for these blocks

Future work:

- proof automation?
- missing Scade 6 features:
- inlining and modular dependency analysis
- pre operator and initialization analysis
- arrays

Conclusion

Our contributions:

- a Coq-based semantics for the control blocks of Scade 6
- switch blocks
- reset blocks
- state machines
- last variables
- a verified dependency analysis used to prove meta-properties of the model
- a verified implementation of an efficient compilation scheme for these blocks

Future work:

- proof automation?
- missing Scade 6 features:
- inlining and modular dependency analysis
- pre operator and initialization analysis
- arrays
https://velus.inria.fr/phd-pesin

Semantics - switch blocks

$$
\begin{aligned}
& \text { when }^{C}(\langle \rangle \cdot x s)(\langle \rangle \cdot c s) \\
& \text { when }{ }^{C}(\langle v\rangle \cdot x s)(\langle C\rangle \cdot c s) \equiv\langle \rangle \cdot \text { when }^{C} \text { xs } x s \\
& \text { when }^{C}(\langle v\rangle \cdot x s)\left(\left\langle C^{\prime}\right\rangle \cdot c s\right) \equiv\langle \rangle \cdot \text { when }^{C} \text { xs } x s \\
& { }^{C} \text { xs } c s
\end{aligned}
$$

$$
\left(\text { when }^{C} H c s\right)(x) \equiv \text { when }^{C}(H(x)) c s
$$

$$
\frac{G, H, b s \vdash e \Downarrow[c s] \quad \forall i, G, \text { when }^{C}(H, b s) c s \vdash b l k s_{i}}{G, H, b s \vdash \operatorname{switch} e\left[C_{i} \text { do } b l k s_{i}\right]^{i} \text { end }}
$$

Semantics - reset blocks

$$
\begin{aligned}
\operatorname{mask}_{k_{k}}^{k}(\mathrm{~F} \cdot r s)(s v \cdot x s) & \equiv\left(\text { if } k^{\prime}=k \text { then sv else }\rangle) \cdot \operatorname{mask}_{k_{k^{\prime}}^{k} r s \times s}^{k}\right. \\
\operatorname{mask}_{k^{\prime}}^{k}(\mathrm{~T} \cdot r s)(s v \cdot x s) & \equiv\left(\text { if } k^{\prime}+1=k \text { then } s v \text { else }\rangle) \cdot \text { mask }_{k^{\prime}+1}^{k} r s \times s\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { G, H, bs } \vdash \text { es } \Downarrow \times s s \\
& G, H, b s \vdash e \Downarrow[y s] \quad \text { bools-of } y s \equiv r s \\
& \forall k, G \vdash f\left(\text { mask }^{k} r s \times s s\right) \Downarrow\left(\text { mask }^{k} r s y s s\right) \\
& G, H, b s \vdash(\text { reset } f \text { every } e)(e s) \Downarrow y s s
\end{aligned}
$$

$$
\begin{gathered}
G, H, b s \vdash e \Downarrow[y s] \\
b_{0 o l s-o f ~ y s \equiv r s} \equiv r s \\
\frac{\forall k, G, \text { mask }^{k} r s(H, b s) \vdash b l k s}{G, H, b s \vdash \text { reset } b l k s \text { every } e}
\end{gathered}
$$

Semantics - Hierarchical State Machines

$$
\begin{gathered}
\forall x, x \in \operatorname{dom}\left(H^{\prime}\right) \Longleftrightarrow x \in l o c s \\
\forall x e,(\text { last } x=e) \in \operatorname{locs} \Longrightarrow G, H+H^{\prime}, b s \vdash_{\mathrm{L}} \text { last } x=e \\
G, H+H^{\prime}, b s \vdash b l k s \quad G, H+H^{\prime}, b s, C_{i} \vdash_{\mathrm{TR}} \text { trans } \Downarrow s t s \\
\hline G, H, b s, C_{i} \vdash_{\mathrm{w}} \text { var locs do blks until trans } \Downarrow \text { sts }
\end{gathered}
$$

$$
H, b s \vdash c k \Downarrow b s^{\prime} \quad \text { fby }\left(\text { const } b s^{\prime}(C, F)\right) s t s_{1} \equiv s t s
$$

$\forall i, \forall k, G,\left(\right.$ select $_{0} C_{i}, k$ sts $\left.(H, b s)\right), C_{i} \vdash_{\mathrm{TR}}$ trans $_{i} \Downarrow\left(\right.$ select $_{0} C_{i}, k$ sts sts $\left.{ }_{1}\right)$ $\forall i, \forall k, G,\left(\right.$ select $_{0} C_{i}, k$ sts $\left.1_{1}(H, b s)\right) \vdash b l k s_{i}$
$G, H, b s \vdash$ automaton initially $C^{c k}\left[\text { state } C_{i} \text { do } b / k s_{i} u n l e s s t r a n s i\right]^{i}$ end

$$
\begin{aligned}
& H, b s \vdash c k \Downarrow b s^{\prime} \quad G, H, b s^{\prime} \vdash_{1} \text { autinits } \Downarrow s t s_{0} \quad \text { fby } s t s_{0} s t s_{1} \equiv s t s \\
& \forall i, \forall k, G,\left(\text { select }_{0}^{C_{i}, k} \text { sts }(H, b s)\right), C_{i} \vdash_{\mathrm{w}} \text { autscope }_{i} \Downarrow\left(\text { select }_{0}^{C_{i}, k} \text { sts sts } s_{1}\right) \\
& \left.G, H, b s \vdash \text { automaton initially autinits }{ }^{c k}\left[\text { state } C_{i} \text { autscope }\right]_{i}\right]^{i} \text { end }
\end{aligned}
$$

Semantics - Transitions

$$
\begin{array}{cc}
G, H, b s \vdash e \Downarrow[y s] \quad \text { bools-of } y s \equiv b s^{\prime} & \\
G, H, b s \vdash_{1} \text { autinits } \Downarrow s t s \\
s t s^{\prime} \equiv \text { first-of }_{\mathrm{F}}^{C} b s^{\prime} \text { sts } & \\
\hline G, H, b s \vdash_{1} C \text { if } e ; \text { autinits } \Downarrow s t s^{\prime} & s t s \equiv \operatorname{const} b s(C, F) \\
\hline G, H, b s \vdash_{1} \text { otherwise } C \Downarrow s t s
\end{array}
$$

first-of $f_{r}^{C}(\mathrm{~T} \cdot b s)(s t \cdot s t s) \equiv\langle C, r\rangle \cdot$ first-of $_{r}^{C} b s s t s$
first-of $r_{r}^{C}(\mathrm{~F} \cdot b s)(s t \cdot s t s) \equiv s t \cdot \mathrm{first}^{\left(o f f_{r}^{C}\right.} b s s t s$

$$
\frac{s t s \equiv \text { const } b s\left(C_{i}, F\right)}{G, H, b s, C_{i} \vdash_{\mathrm{TR}} \epsilon \Downarrow s t s}
$$

$G, H, b s \vdash e \Downarrow[y s] \quad$ bools-of $y s \equiv b s^{\prime}$
$G, H, b s, C_{i} \vdash_{\mathrm{TR}}$ trans $\Downarrow s t s$

$$
s t s^{\prime} \equiv \text { first-of }_{\mathrm{F}}^{C} b s^{\prime} s t s
$$

$\overline{G, H, b s, C_{i} \vdash_{\mathrm{TR}} \text { if e continue } C \text { trans } \Downarrow s t s^{\prime}}$

$$
\begin{gathered}
G, H, b s \vdash e \Downarrow[y s] \quad \text { bools-of } y s \equiv b s^{\prime} \\
G, H, b s, C_{i} \vdash_{\mathrm{TR}} \text { trans } \Downarrow s t s \\
s t s^{\prime} \equiv \text { first-of } \mathrm{C}_{\mathrm{T}}^{C} b s^{\prime} s t s \\
\hline G, H, b s, C_{i} \vdash_{\mathrm{TR}} \text { if } e \text { then } C \text { trans } \Downarrow s t s^{\prime}
\end{gathered}
$$

Semantics - local blocks and last variables

$$
\frac{H(\operatorname{last} x) \equiv v s}{G, H, b s \vdash \operatorname{last} x \Downarrow[v s]}
$$

$$
\begin{gathered}
\forall x, x \in \operatorname{dom}\left(H^{\prime}\right) \Longleftrightarrow x \in \operatorname{locs} \\
\forall x e,(\text { last } x=e) \in \operatorname{locs} \Longrightarrow G, H+H^{\prime}, b s \vdash_{\mathrm{L}} \text { last } x=e \\
G, H+H^{\prime}, \text { bs } \vdash \text { blks } \\
G G, H, b s \vdash \text { var locs let blkstel }
\end{gathered}
$$

$$
\frac{G, H, b s \vdash e \Downarrow\left[v s_{0}\right] \quad H(x) \equiv v s_{1} \quad H(\text { last } x) \equiv \text { fby } v s_{0} v s_{1}}{G, H, b s \vdash_{\mathrm{L}} \text { last } x=e}
$$

$$
\left(H_{1}+H_{2}\right)(x)= \begin{cases}H_{2}(x) \text { if } x \in H_{2} \\ H_{1}(x) \text { otherwise }\end{cases}
$$

Dependency analysis of dataflow equations

```
node f(x : int) returns (y, z : int)
var half : bool;
let
    half = true fby (not half);
    (y, z) = if half then (0, x) else (1, y);
tel
```


Dependency analysis of dataflow equations

```
node f(x : int) returns (y, z : int)
var half : bool;
let
    half = true fby (not half);
    (y, z) = if half then (0, x) else (1, y);
tel
```


Dependency analysis of dataflow equations

```
node f(x : int) returns (y, z : int)
var half : bool;
let
    half = true fby (not half);
    (y, z) = if half then (0, x) else (1, y);
tel
```


Dependency analysis of dataflow equations

```
node f(x : int) returns (y, z : int)
var half
let
    half = true fby (not half);
    (y, z) = if half then (0, x) else (1, y);
tel
```


Dependency analysis of control blocks

```
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
    switch step
        | true do
            mA = not (last mB);
            mB = last mA;
        | false do (mA, mB) = (last mA, last mB)
        end;
        last mA = true;
        last mB = false;
tel
```


Dependency analysis of control blocks

```
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
    switch step
        | true do
            mA = not (last mB);
            mB = last mA;
        | false do (mA, mB) = (last mA, last mB)
        end;
        last mA mA(l)}= true
    last mB}\mp@subsup{}{}{mB(I)}= false
tel
```


Dependency analysis of control blocks

```
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
    switch step
        | true do
        mA }\mp@subsup{}{}{mA(t)}=\mathrm{ not (last mB);
        mB
        | false do (mA mA(f)},\mp@subsup{m}{B}{mB(f)})=(last mA, last mB)
    end;
    last mA }\mp@subsup{}{}{mA(I)}= true
    last mB}\mp@subsup{}{}{mB(I)}= false
tel
```


Dependency analysis of control blocks

```
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
    switch step
        | true do
        mA mA(t)}=\mathrm{ not (last mB);
        mB}\mp@subsup{}{}{mB(t)}=\mathrm{ last mA;
        | false do (mA mA(f), mB mB(f)})=(\mathrm{ last mA, last mB)
        end;
        last mA }\mp@subsup{}{}{mA(I)}= true
    last mB}\mp@subsup{}{}{mB(/)}= false
tel
```


Dependency analysis of control blocks

```
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
    switch step
        | true do
        mA mA(t)}=\mathrm{ not (last mB);
        mB}\mp@subsup{}{}{mB(t)}= last mA
        | false do (mA mA(f), mB mB(f)})=\mathrm{ (last mA, last mB)
        end;
        last mA }\mp@subsup{}{}{mA(I)}=\mathrm{ true;
    last mB}\mp@subsup{}{}{mB(/)}= false
tel
```


Dependency analysis of control blocks

```
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
    switch step
        | true do
        mA mA(t)}=\mathrm{ not (last mB);
        mB
        | false do (mA }\mp@subsup{}{}{mA(f)},m\mp@subsup{B}{}{mB(f)})=\mathrm{ (last mA, last mB)
    end;
    last mA mA(I)}=\mathrm{ true;
    last mB}\mp@subsup{}{}{mB(I)}=\mathrm{ false;
tel
```


Dependency analysis of control blocks

```
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
    switch step
        | true do
        mA }\mp@subsup{}{mA(t)}{mB(t)}\mathrm{ not (last mB);
        mB
        | false do (mA }\mp@subsup{}{}{mA(f)},m\mp@subsup{B}{}{mB(f)})=\mathrm{ (last mA, last mB)
    end;
    last mA mA(I)}=\mathrm{ true;
    last mB}\mp@subsup{}{}{mB(I)}=\mathrm{ false;
tel
```


Dependency graph analysis

$\overline{\text { AcyGraph } \emptyset \emptyset} \quad \frac{\text { AcyGraph } V E}{\text { AcyGraph }(V \cup\{x\}) E} \quad \frac{\text { AcyGraph } V E \quad x, y \in V \quad y\lrcorner_{E}^{*} x}{\text { AcyGraph } V(E \cup\{x \rightarrow y\})}$

- Simple graph analysis, based on DFS
- Produces a witness that the graph is acyclic (AcyGraph) that we will reason on
- More difficult to show termination in Coq

Dependency graph analysis

AcyGraph V E $\overline{\text { AcyGraph }(V \cup\{x\}) E}$

```
\(\frac{\text { AcyGraph } V E \quad x, y \in V \quad y \rightarrow_{E}^{*} x}{\text { AcyGraph } V(E \cup\{x \rightarrow y\})}\)
Definition visited (p : set) (v : set) : Prop :=
\[
\begin{aligned}
& (\forall \mathrm{x}, \mathrm{x} \in \mathrm{p} \rightarrow \neg(\mathrm{x} \in \mathrm{v})) \\
\wedge & \exists \mathrm{a}, \text { AcyGraph v a } \\
& \wedge(\forall \mathrm{x}, \mathrm{x} \in \mathrm{v} \rightarrow \exists \mathrm{zs}, \\
& \operatorname{graph}(\mathrm{x})=\text { Some zs } \\
& \wedge(\forall \mathrm{y}, \mathrm{y} \in \mathrm{zs} \rightarrow \text { has_arc a y x))} .
\end{aligned}
\]
Program Fixpoint dfs'
\[
\text { (s : \{p| } \mid \forall \mathrm{x}, \mathrm{x} \in \mathrm{p} \rightarrow \mathrm{x} \in \operatorname{graph}\})(\mathrm{x}: \text { ident) }
\]
\[
(\mathrm{v}:\{\mathrm{v} \mid \text { visited } \mathrm{s} \mathrm{v}\})\{\text { measure }(|\operatorname{graph}|-|\mathrm{s}|)\}
\]
\[
: \text { option }\left\{\mathrm{v}^{\prime} \mid \text { visited } \mathrm{s} \mathrm{v}^{\prime} \& \mathrm{x} \in \mathrm{v}^{\prime} \wedge \mathrm{v} \subseteq \mathrm{v}^{\prime}\right\}:=\ldots
\]
```


Dependency graph analysis

Program Fixpoint dfs'

```
(s : { p | }|\textrm{x},\textrm{x}\in\textrm{p}->\textrm{x}\in\operatorname{graph}})(x : ident
(v : { v | visited s v }) {measure (|graph| - |s|)}
: option { v' | visited s v' & x \in v' ^ v \subseteq v' } := ...
```


Dependency graph analysis

	AcyGraph V E	AcyGraph V E	$x, y \in V$	$y \rightarrow{ }_{E}^{*} X$
$\overline{\text { AcyGraph } \emptyset \emptyset}$	$\overline{\text { AcyGraph }(V \cup\{x\}) E}$	AcyGrap	$(E \cup\{x$	
Definition visited (p : set) (v : set) : Prop := $(\forall \mathrm{x}, \mathrm{x} \in \mathrm{p} \rightarrow \neg(\mathrm{x} \in \mathrm{v}))$				
$\wedge(\forall \mathrm{x}, \mathrm{x} \in \mathrm{v} \rightarrow \exists \mathrm{zs}, \operatorname{graph}(\mathrm{x})=$ Some zs				

Program Fixpoint dfs'

$$
\begin{aligned}
& \text { (} \mathrm{s}:\{\mathrm{p} \mid \nabla \mathrm{x}, \mathrm{x} \in \mathrm{p} \rightarrow \mathrm{x} \in \operatorname{graph}\} \text {) (} \mathrm{x}: \text { ident) } \\
& \text { (v : \{ v | visited s v|\}) \{measure (|graph| - |s|)\} } \\
& \text { : option } \left.\left\{v^{\prime}| | \text { visited } s v^{\prime} \& x \in v^{\prime} \wedge v \subseteq v^{\prime}\right\}\right\}:=\ldots
\end{aligned}
$$

Dependency graph analysis

	AcyGraph V E	AcyGraph V E	$x, y \in V$	$y \rightarrow{ }_{E}^{*} x$
$\overline{\text { AcyGraph } \emptyset \emptyset}$	AcyGraph $(V \cup\{x\}) E$	AcyGrap	$(E \cup\{x$	
```Definition visited (p : set) (v : set) : Prop := (\forallx,x f p -> ᄀ(x\inv)) \exists a, AcyGraph v a``````^(\forally,y \in zs }->\mathrm{ has_arc a y```				

Program Fixpoint dfs'

$$
\begin{aligned}
& \text { ( } \mathrm{s}:\{\mathrm{p} \mid \nabla \mathrm{x}, \mathrm{x} \in \mathrm{p} \rightarrow \mathrm{x} \in \operatorname{graph}\} \text { ) ( } \mathrm{x}: \text { ident) } \\
& \text { (v : \{ v | visited s v|\}) \{measure (|graph| - |s|)\} } \\
& \text { : option }\left\{v^{\prime}| | \text { visited } s v^{\prime} \& x \in v^{\prime} \wedge v \subseteq v^{\prime}\right\}:=\ldots
\end{aligned}
$$

## Proving with dependencies

\(\frac{TopoOrder (AcyGraph V E)[]}{\substack{TopoOrder (AcyGraph V E) I <br>

\neg \in V \quad \ln x I \quad\left(\forall y, y \rightarrow_{E}^{*} x \Longrightarrow \ln y I\right)}}\)| TopoOrder (AcyGraph $V E)(x:: I)$ |
| :--- |

## Proving with dependencies

```
 TopoOrder (AcyGraph V E)/
 x\inV }\quad\neg\operatorname{ln}x|\quad(\forally,y->\mp@subsup{}{E}{*}x\Longrightarrow\operatorname{ln}yl
 TopoOrder (AcyGraph V E) (x::I)
```

```
node drive_sequence(step : bool)
```

node drive_sequence(step : bool)
returns (mA, mB : bool)
returns (mA, mB : bool)
let
let
switch step
switch step
| true do
| true do
mA mA(t)}= not (last mB)
mA mA(t)}= not (last mB)
mB}\mp@subsup{}{}{mB(t)}= last mA
mB}\mp@subsup{}{}{mB(t)}= last mA
| false do (mA mA(f)},\mp@subsup{mB}{}{mB(f)})=(last mA, last mB
| false do (mA mA(f)},\mp@subsup{mB}{}{mB(f)})=(last mA, last mB
end;
end;
last mA mA(I)}=\mathrm{ true;
last mA mA(I)}=\mathrm{ true;
last mB }\mp@subsup{}{}{mB(I)}= false
last mB }\mp@subsup{}{}{mB(I)}= false
tel

```
tel
```


## Proving with dependencies



## Proving with dependencies

TopoOrder (AcyGraph V E) []

```
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
 switch step
 | true do
 mA}\mp@subsup{}{}{mA(t)}=\mathrm{ not (last mB);
 mB}\mp@subsup{}{}{mB(t)}= last mA
 | false do (mA mA(f), mB mB(f)})=(last mA, last mB
 end;
 last mA mA(I)}=\mathrm{ true;
 last mB}\mp@subsup{}{}{mB(I)}= false
tel
```

$x \in V \quad \neg \ln x I \quad\left(\forall y, y \rightarrow_{E}^{*} x \Longrightarrow \ln y I\right)$
TopoOrder (AcyGraph VE) ( $x:: I$ )

TopoOrder (AcyGraph $V E$ ) I $x \in V \quad \neg \ln x I \quad\left(\forall y, y \rightarrow_{E}^{*} x \Longrightarrow \ln y I\right)$

TopoOrder (AcyGraph $V E$ ) $(x:: I)$


## Proving with dependencies

TopoOrder (AcyGraph VE) []

```
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
 switch step
 | true do
 mA}\mp@subsup{}{}{mA(t)}=\mathrm{ not (last mB);
 mB}\mp@subsup{}{}{mB(t)}= last mA
 | false do (mA mA(f)},\mp@subsup{mB}{}{mB(f)})=(last mA, last mB
 end;
 last mA }\mp@subsup{}{}{mA(l)}=\mathrm{ true;
 last mB}\mp@subsup{}{}{mB(I)}= false
tel
```



## Proving with dependencies

TopoOrder (AcyGraph VE) []

```
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
 switch step
 | true do
 mA}\mp@subsup{}{}{mA(t)}=\mathrm{ not (last mB);
 mB}\mp@subsup{}{}{mB(t)}= last mA
 | false do (mA mA(f)},\mp@subsup{mB}{}{mB(f)})=(last mA, last mB
 end;
 last mA }\mp@subsup{}{}{mA(l)}=\mathrm{ true;
 last mB}\mp@subsup{}{}{mB(I)}= false
tel
```



## Proving with dependencies



## Proving with dependencies

TopoOrder (AcyGraph V E) []

$$
\frac{x \in V \quad \neg \ln x I \quad\left(\forall y, y \rightarrow_{E}^{*} x \Longrightarrow \ln y I\right)}{\text { TopoOrder }(\text { AcyGraph } V E)(x:: I)}
$$

TopoOrder (AcyGraph V E) I
returns (mA, mB : bool)
let
switch step
| true do
$\mathrm{mA}^{m A(t)}=$ not (last mB );
$\mathrm{mB}^{m B(t)}=$ last mA ;
| false do $\left(m A^{m A(f)}, \mathrm{mB}^{m B(f)}\right)=$ (last mA , last mB )
end;
last $m A^{m A(I)}=$ true;
last $\mathrm{mB}^{m B(I)}=$ false;
tel


## Proving with dependencies

TopoOrder (AcyGraph VE) []
node drive_sequence(step : bool) returns (mA, mB : bool)
let
switch step
| true do $\mathrm{mA}^{m A(t)}=$ not (last mB);
$\mathrm{mB}^{m B(t)}=$ last mA ;
| false do (mA $\left.{ }^{m A(f)}, \mathrm{mB}^{m B(f)}\right)=$ (last mA, last mB ) end;
last $m A^{m A(1)}=$ true;
last $\mathrm{mB}^{m B(I)}=$ false;
tel


## Performances

	Vêlus	Hept+CompCert		Hept+gcc	He
stepper_motor	930	1185	(+27\%)	610 (-34\%)	535 (-42\%)
hrono	505	970	(+92\%)	570 (+12\%)	570 (+12\%)
cruisecontrol	1405	1745	(+24\%)	960 (-319)	895 (-36\%)
heater	2415	3125	(+29\%)	730 (-69\%)	515 (-78\%)
buttons	1015	1430	(+40\%)	625 (-38\%)	625 (-38\%)
stopwatch	1305	1970	+50\%)	1290 (-1\%)	1290 (-1

WCET estimated by OTAWA $2\left[\begin{array}{l}\text { Balabigiga, Casese Rochange and Sainat (2010): OTAWA: } \\ \text { An O Pen Toolbox for Adaptive WCET Analysis }\end{array}\right]$ for an armv7

- Vélus generally better than Heptagon, but worse than Heptagon+GCC


## Performances

	Vêlus	Hept+CompCert		Hept+gcc	Hept+gcci
stepper motor	930	1185	(+27\%)	610 (-34\%)	535 (-42\%)
chrono	505	970	(+92\%)	570 (+12\%)	570 (+12\%)
cruisecontr	1405	17	(+24\%)	960 (-31	895 (-36\%)
heater	2415	3125	(+29\%)	730 (-69\%)	515 (-78\%)
buttons	1015	1430	(+40\%)	625 (-38\%)	625 (-38\%)
stopwatch	1305	1970	(+50\%)	1290 (-1\%)	1290 (-1\%)

WCET estimated by OTAWA $2\left[\begin{array}{l}\text { Balabigiga, Casese Rochange and Sainat (2010): OTAWA: } \\ \text { An O Pen Toolbox for Adaptive WCET Analysis }\end{array}\right]$ for an armv7

- Vélus generally better than Heptagon, but worse than Heptagon+GCC
- Inlining of CompCert not fine tuned to small functions generated by Vélus


## Performances

	Vélus	Hept+CompCert		Hept+gcc	Hept+gcci
stepper_motor	930	1185	(+27\%)	610 (-34\%)	535 (-42\%)
chrono	505	970	(+92\%)	570 (+12\%)	570 ( $+12 \%$ )
uisecontr	1405	1745	(+24\%)	960 (-31)	895 (-36\%)
heater	2415	3125	(+29\%)	730 (-69\%)	515 (-78\%)
buttons	1015	1430	(+40\%)	625 (-38\%)	625 (-38\%)
stopwatch	1305	1970	(+50\%)	1290 (-1\%)	1290 (-1\%

WCET estimated by OTAWA $\left.2 \begin{array}{l}\text { Ballabige, Casse, Rochange, and Sainat (2010): } \\ \text { An Open Tow Tolbox for Adappive WCET Analysis }\end{array}\right]$ for an armv7

- Vélus generally better than Heptagon, but worse than Heptagon+GCC
- Inlining of CompCert not fine tuned to small functions generated by Vélus
- Some possible improvements
- Better compilation of last to reduce useless updates (done in unpublished version)
- Memory optimization: state variables in mutually exclusive states can be be reused

