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Statecharts [Harel (1987): Statecharts: A Visual Formalism for Complex Systems ]

SyncCharts [André (1995): SyncCharts: A Visual Repre-
sentation of Reactive Behaviors ]

Mode-Automata
[
Maraninchi and Rémond (1998): Mode-Automata: About
Modes and States for Reactive Systems

]
Lucid Synchrone [Pouzet (2006): Lucid Synchrone, v. 3.

Tutorial and reference manual ]
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[
Colaço, Pagano, and Pouzet (2017): Scade 6: A Formal
Language for Embedded Critical Software Development
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Hierarchical State Machines

state Feeding do
ena = true;
automaton initially Starting

end;
unless pause then Holding

state Starting do
step = true fby false

unless time >= 750 then Moving

state Moving do
step = true fby false

unless time >= 500 then Moving

state Holding do
step = false;
automaton initially Waiting

end;
unless
| not pause and time >= 750 then Feeding
| not pause continue Feeding

state Waiting do
ena = true

unless time >= 500 then Modulating

state Modulating do
ena = pwm(true)

H∗

node feed_pause(pause : bool) returns (ena, step : bool)
var time : int;
let
reset
time = count_up(50)

every (false fby step);

automaton initially Feeding

end
tel
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inc 5 4 1 3 2 8 3 . . .
o 5 9 10 13 15 23 26 . . .

G (f ) = node f (x1, . . . , xn) returns (y1, . . . , ym) blk
∀i , H(xi ) ≡ xss i ∀j , H(yj) ≡ yss j G ,H, (base-of (xs1, . . . , xsn)) ⊢ blk

G ⊢ f (xss) ⇓ yss

∀i , H(xs i ) ≡ vs i G ,H, bs ⊢ es ⇓ [vs i ]i

G ,H, bs ⊢ xs = es
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introducing anxiliary variables and performing suit- 

able substitutions so that the right-hand side of each 

equation contains at most one sequence operator; 

indicating the clocks in the equations (true stands for 

the basic clock of the program). The when operators 

are then redundant, and may be dropped. 

3.2.1 Semantic Domains 

Let us define a memory c to be a function from identifiers 

to values, and a history h to be a sequence of memories. 

A memory associates I with an identifier when the corre- 

sponding variable does not have to be computed (its clock 

is false or does not. have to be computed). A memory will 

give the values of variables at a given cycle. A system of 

equations eqs is compatible with a memory u if the first. cy- 

cle of evaluation of eqs associates the value O(X) with each 

identifier X defined in eqs. The semantics of a program is 

the transformation 

(input history) ==+ (output history) 

it computes. 

We shall not give the semantics of simple expressions 

(sexp) aa they are obvious. Let us define the following 

predicates. 

o I- sexp : k In the memory (I, the simple expression exp 

evaluates as k. 

u k exp 5 ex$ In the memory o the expression exp eval- 

uates as k, and exp will be later on evaluated as exp’. 

eq s eq’ The equation eq is compatible with the memory 

Q and will later on be considered as eq’. 

eqs 5 eqs’ The system of equations eqs is compatible with 

the memory B, and will later on be considered as eqs’. 

h k eqs : h’ From its input history h, the program defined 

by the system of equations eqs produces the output 

history h’. 

3.2.2 Rules 

Programs 

eqs % eqs’, h E eqs’ : h’ 

o[input].h t- eqs : a(0utputj.h’ 

where a[input] and a[output] respectively denote the 
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and its value is associated with the variable on the left-hand 
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id= (ck) exp 5 id= (ck) exp’ 
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(I!-s.exD:k,. k,#l. 

u!- curr(sexp.k) 3 currbexp.k,) 

uI-aexp:l 
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This section deals with the most specific features of the 
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detection 

As usual in non-procedural languages, the only constraints 
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neously depends on Y at a given cycle if the value of Y at 

this cycle must be known in order to compute the value of 
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[
Caspi, Pilaud, Halbwachs, and Plaice (1987): LUSTRE: A

declarative language for programming synchronous systems

]

G (f ) = node f (x1, . . . , xn) returns (y1, . . . , ym) blk
∀i , H(xi ) ≡ xss i ∀j , H(yj) ≡ yss j G ,H, (base-of (xs1, . . . , xsn)) ⊢ blk

G ⊢ f (xss) ⇓ yss

∀i , H(xs i ) ≡ vs i G ,H, bs ⊢ es ⇓ [vs i ]i

G ,H, bs ⊢ xs = es
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fby operator semantics

node count_up(inc : int)
returns (o : int)
let
o = (0 fby o) + inc;

tel

fby (‹› · xs) (‹› · ys) ≡ ‹› · fby xs ys
fby (‹v1› · xs) (‹v2› · ys) ≡ ‹v1› · fby1 v2 xs ys

inc ‹› ‹› 5 ‹› ‹› 4 1 3 2 ‹› 8 3 . . .
0 fby o ‹› ‹› 0

‹› ‹› 5 9 10 13 ‹› 15 23

. . .
o = (0 fby o) + inc ‹› ‹› 5

‹› ‹› 9 10 13 15 ‹› 23 26

. . .
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Stream semantics of switch blocks
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
switch step
| true do
mA = not (last mB);
mB = last mA;

| false do (mA, mB) = (last mA, last mB)
end;
last mA = true;
last mB = false;

tel

step

F T T F F T F T F T F T F F T

. . .
last mA

T T T F F F F F T T T T F F F

. . .
last mB

F F T T T T F F F F T T T T T

. . .
mA

T T F F F F F T T T T F F F F

. . .
mB

F T T T T F F F F T T T T T F

. . .
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Stream semantics of reset blocks and state machines

[
Bourke, Brun, and Pouzet (2020): Mechanized Semantics and Verified
Compilation for a Dataflow Synchronous Language with Reset

]
maskk

k ′ (F · rs) (sv · xs) ≡ (if k ′ = k then sv else ‹›) ·maskk
k ′ rs xs

maskk
k ′ (T · rs) (sv · xs) ≡ (if k ′ + 1 = k then sv else ‹›) ·maskk

k ′+1 rs xs

G ,H, bs ⊢ e ⇓ [ys] bools-of ys ≡ rs
∀k , G ,maskk rs (H, bs) ⊢ blks
G ,H, bs ⊢ reset blks every e

reset block 7→ mask operator

state machines 7→ select operator
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Stream semantics of reset blocks and state machines

[
Bourke, Brun, and Pouzet (2020): Mechanized Semantics and Verified
Compilation for a Dataflow Synchronous Language with Reset

]
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Proving semantic meta-properties

Prove properties of the semantic model:
Determinism of the semantics:
if G ⊢ f (xs) ⇓ ys1 and G ⊢ f (xs) ⇓ ys2 then ys1 ≡ ys2

Clock-system correctness:
if Γ ⊢ e : ck and G ,H, bs ⊢ e ⇓ vs then H, bs ⊢ ck ⇓ (clock-of vs)

Proof by induction on the syntax, inversion of the semantics:
...
variable: inverting G ,H, bs ⊢ x ⇓ [vs] tells us H(x) ≡ vs. What now ?
...
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Dependency Analysis

Consider a program with the following definitions:
x = x; admits all value
x = x + 1; admits no value

Not possible to prove any property of the stream of x.
We can only reason on program without dependency cycle.

Solution: dependency analysis
[
Halbwachs, Caspi, Raymond, and Pilaud (1991): The
synchronous dataflow programming language LUSTRE

]

node-by-node graph analysis (no type system
[
Cuoq and Pouzet (2001): Modular Causality in a
Synchronous Stream Language

]
)

extended to handle control blocks (using labels)
verified graph analysis algorithm: produces a witness of acyclicity
Used to prove properties of the semantics (clock-system correctness, determinism)
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node feed_pause(pause : bool) returns (ena, step : bool)
var time : int;
let
reset
time = count_up(50)

every (false fby step);

automaton initially Feeding

end
tel

state Feeding do
ena = true;
automaton initially Starting

end;
unless pause then Holding

state Starting do
step = true fby false

unless time >= 750 then Moving

state Moving do
step = true fby false

unless time >= 500 then Moving

state Holding do
step = false;
automaton initially Waiting

end;
unless
| not pause and time >= 750 then Feeding
| not pause continue Feeding

state Waiting do
ena = true

unless time >= 500 then Modulating

state Modulating do
ena = pwm(true)

H∗
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node feed_pause(pause : bool) returns (ena, step : bool)
var time : int;
let
reset
time = count_up(50)

every (false fby step);

automaton initially Feeding

end
tel

state Feeding do
ena = true;
automaton initially Starting

end;
unless pause then Holding

state Starting do
step = true fby false

unless time >= 750 then Moving

state Moving do
step = true fby false

unless time >= 500 then Moving

state Holding do
step = false;
automaton initially Waiting

end;
unless
| not pause and time >= 750 then Feeding
| not pause continue Feeding

state Waiting do
ena = true

unless time >= 500 then Modulating

state Modulating do
ena = pwm(true)

H∗
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Compilation of State Machines
automaton initially Starting

end

state Starting do
step = true fby false

unless time >= 750 then Moving

state Moving do
step = true fby false

unless time >= 500 then Moving
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Compilation of State Machines
automaton initially Starting

end

state Starting do
step = true fby false

unless time >= 750 then Moving

state Moving do
step = true fby false

unless time >= 500 then Moving

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

[
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automaton initially Starting

end

state Starting do
step = true fby false

unless time >= 750 then Moving

state Moving do
step = true fby false

unless time >= 500 then Moving

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false

every res
| Moving do ...
end

tel

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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automaton initially Starting

end

state Starting do
step = true fby false

unless time >= 750 then Moving

state Moving do
step = true fby false

unless time >= 500 then Moving

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false

every res
| Moving do ...
end

tel

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

[
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automaton initially Starting

end

state Starting do
step = true fby false

unless time >= 750 then Moving

state Moving do
step = true fby false

unless time >= 500 then Moving

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false

every res
| Moving do ...
end

tel

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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automaton initially Starting

end

state Starting do
step = true fby false

unless time >= 750 then Moving

state Moving do
step = true fby false

unless time >= 500 then Moving

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false

every res
| Moving do ...
end

tel

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

[
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automaton initially Starting

end

state Starting do
step = true fby false

unless time >= 750 then Moving

state Moving do
step = true fby false

unless time >= 500 then Moving

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false

every res
| Moving do ...
end

tel

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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Compilation of State Machines
automaton initially Starting

end

state Starting do
step = true fby false

unless time >= 750 then Moving

state Moving do
step = true fby false

unless time >= 500 then Moving

var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false

every res
| Moving do ...
end

tel

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is
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cursively the translation function to its components as de-
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w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not
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and
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...
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possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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Generating Fresh Identifiers during Compilation

generating new identifiers?
var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false

every res
| Moving do ...
end

tel
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In OCaml:

let fresh =
let cnt = ref 0 in
fun () ->
cnt := !cnt + 1; !cnt
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Compilation of State Machines – Coq Implementation
var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false

every res
| Moving do ...
end

tel

Fixpoint auto_block (blk: block) : Fresh block :=
match blk with
| ...
| Bauto Strong ck (_, oth) states ⇒
do pst ← fresh_ident; do pres ← fresh_ident;
do st ← fresh_ident; do res ← fresh_ident;
let stateq :=

Beq ([ pst; pres],
[ Efby [Eenum oth; Eenum false]

[ Evar st; Evar res]]) in
let branches := map (fun ’((e, _), (unl, _)) ⇒

let transeq := Beq ([st; res], trans_exp unl e) in
(e, [ Breset [transeq] (Evar pres)])) states in

let sw1 := Bswitch (Evar pst) branches in
do branches ← mmap (fun ’((e, _), (_, (blks, _))) ⇒

do blks’ ← mmap auto_block blks;
ret (e, ([ Breset blks’ (Evar res)]))) states;

let sw2 := Bswitch (Evar st) branches in
ret (Blocal [pst; pres; st; res] [ stateq; sw1; sw2])
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Compilation of State Machines – Coq Implementation
var pst, pres, st, res; let
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switch pst
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(st, res) =
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every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false

every res
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end

tel
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[ Evar st; Evar res]]) in
let branches := map (fun ’((e, _), (unl, _)) ⇒

let transeq := Beq ([st; res], trans_exp unl e) in
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Common monadic notation:
do x ← e1; e2 ∼ let x := e1 in e2
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let sw1 := Bswitch (Evar pst) branches in
do branches ← mmap (fun ’((e, _), (_, (blks, _))) ⇒

do blks’ ← mmap auto_block blks;
ret (e, ([ Breset blks’ (Evar res)]))) states;

let sw2 := Bswitch (Evar st) branches in
ret (Blocal [pst; pres; st; res] [ stateq; sw1; sw2])

Basile Pesin Verified Compilation of a Synchronous Dataflow Language with State Machines 26/36



Introduction Synchronous Dataflow The Vélus Compiler Relational Semantics Dependency Analysis Verified Compilation Conclusion

Compilation of State Machines – Coq Implementation
var pst, pres, st, res; let
(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true fby false

every res
| Moving do ...
end

tel

Fixpoint auto_block (blk: block) : Fresh block :=
match blk with
| ...
| Bauto Strong ck (_, oth) states ⇒
do pst ← fresh_ident; do pres ← fresh_ident;
do st ← fresh_ident; do res ← fresh_ident;
let stateq :=

Beq ([ pst; pres],
[ Efby [Eenum oth; Eenum false]

[ Evar st; Evar res]]) in
let branches := map (fun ’((e, _), (unl, _)) ⇒

let transeq := Beq ([st; res], trans_exp unl e) in
(e, [ Breset [transeq] (Evar pres)])) states in

let sw1 := Bswitch (Evar pst) branches in
do branches ← mmap (fun ’((e, _), (_, (blks, _))) ⇒

do blks’ ← mmap auto_block blks;
ret (e, ([ Breset blks’ (Evar res)]))) states;

let sw2 := Bswitch (Evar st) branches in
ret (Blocal [pst; pres; st; res] [ stateq; sw1; sw2])
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Compilation of State Machines – Proof Intuition

definition completion

state machines

switch blocks

local scopes

normalization

blk

⌊
blk

⌋

Lemma (State machines correctness)

if G ,H ⊢ blk then G ,H ⊢
⌊
blk

⌋
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state machines

switch blocks

local scopes

normalization

blk

⌊
blk

⌋

Lemma (State machines correctness)

if G ,H ⊢ blk then G ,H ⊢
⌊
blk

⌋

Works well:
local transformation and
reasoning
correspondence between
select, mask and when
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Compilation of State Machines – Proof Intuition

definition completion

state machines

switch blocks

local scopes

normalization

blk

⌊
blk

⌋

Lemma (State machines correctness)

if G ,H ⊢ blk then G ,H ⊢
⌊
blk

⌋

Works well:
local transformation and
reasoning
correspondence between
select, mask and when

Works less well:
static invariants (typing,
clock-typing, . . . )
fresh identifiers
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Compilation of State Machines – Coq Proof

Lemma (State machines correctness)

if G ,H ⊢ blk then G ,H ⊢
⌊
blk

⌋
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Compilation of Switch Blocks

switch st
| Starting do
reset
step = true fby false

every res
| Holding do ...
end

resS = res when (st=Starting);
resM = res when (st=Moving);
step = merge st (Starting => stepS) (Moving => stepM);
reset
stepS = true when (st=Starting) fby false when (st=Starting)

every resS;

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))
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(Gn))

and ... and
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(C1 → projC1(x)
yk

(Gk))
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(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

[
Colaço, Pagano, and Pouzet (2005): A Conservative Extension

of Synchronous Data-flow with State Machines

]

sampling explicited by when
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constants are also sampled
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Compilation of Switch Blocks

switch st
| Starting do
reset
step = true fby false

every res
| Holding do ...
end

resS = res when (st=Starting);
resM = res when (st=Moving);
step = merge st (Starting => stepS) (Moving => stepM);
reset
stepS = true when (st=Starting) fby false when (st=Starting)

every resS;

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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switch st
| Starting do
reset
step = true fby false

every res
| Holding do ...
end

resS = res when (st=Starting);
resM = res when (st=Moving);
step = merge st (Starting => stepS) (Moving => stepM);
reset
stepS = true when (st=Starting) fby false when (st=Starting)

every resS;

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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switch st
| Starting do
reset
step = true fby false

every res
| Holding do ...
end

resS = res when (st=Starting);
resM = res when (st=Moving);
step = merge st (Starting => stepS) (Moving => stepM);
reset
stepS = true when (st=Starting) fby false when (st=Starting)

every resS;

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

[
Colaço, Pagano, and Pouzet (2005): A Conservative Extension

of Synchronous Data-flow with State Machines

]
sampling explicited by when

choice explicited by merge

constants are also sampled
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Compilation of Switch Blocks – Proof Intuition

definition completion

state machines

switch blocks

local scopes

normalization

blk

⌊
blk

⌋
σ,ck

Lemma (Switch correctness)

if G ,H1 ⊢ blk and H1 ⊑σ H2 then G ,H2 ⊢
⌊
blk

⌋
σ,ck
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Lemma (Switch correctness)
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⌊
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Works less well:
reasoning is not local:
renaming propagates to
sub-blocks
static invariants, in
particular clock-typing

Basile Pesin Verified Compilation of a Synchronous Dataflow Language with State Machines 30/36



Introduction Synchronous Dataflow The Vélus Compiler Relational Semantics Dependency Analysis Verified Compilation Conclusion

Compilation of Switch Blocks – Proof Intuition

definition completion

state machines

switch blocks
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⌊
blk

⌋
σ,ck

Lemma (Switch correctness)

if G ,H1 ⊢ blk and H1 ⊑σ H2 then G ,H2 ⊢
⌊
blk

⌋
σ,ck

Works well:
correspondence between
switch and when/merge:
implicit to explicit
sampling
less cases to handle

Works less well:
reasoning is not local:
renaming propagates to
sub-blocks
static invariants, in
particular clock-typing
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Compilation to Imperative Code

Untyped
Lustre NLustre

Stc

ObcClightAssembly

parsing

dataflow
optimizations

i-translation

scheduling

s-translation

imperative
optimizations

generationcompilation by CompCert[
Blazy, Dargaye, and Leroy (2006): Formal Veri-
fication of a C Compiler Front-End

]
printing

Lustre

elaboration definition
completion

dependency
analysis

state
machines

switch
blocks

local
scopes

normalization transcription

semantics

semantics

semantics

semanticssemantics

semantics clocked
semantics
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Compiling Last Variables

Untyped
Lustre

Lustre NLustre

Stc

Obc

Clight

Assembly

switch step
| true do
mA = not (last mB);
mB = last mA;

| false do (mA, mB) = (last mA, last mB)
end;
last mA = true;
last mB = false;
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switch step {
| true =>
tmp := state(mA);
state(mA) := not state(mB);
state(mB) := tmp

| false =>
state(mA) := state(mA);
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Lustre

Lustre NLustre

Stc

Obc

Clight

Assembly

switch step
| true do
mA = not (last mB);
mB = last mA;

| false do (mA, mB) = (last mA, last mB)
end;
last mA = true;
last mB = false;

switch step {
| true =>
tmp := state(mA);
state(mA) := not state(mB);
state(mB) := tmp
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};
mA := state(last$mA);
mB := state(last$mB)
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Main Correctness Theorem

Untyped
Lustre

Lustre NLustre

Stc

Obc

Clight

Assembly

Theorem behavior_asm:
∀ D G Gp P main ins outs,
elab_declarations D = OK (exist _ G Gp) →
compile D main = OK P →
sem_node G main (pStr ins) (pStr outs) →
wt_ins G main ins →
wc_ins G main ins →
∃ T, program_behaves (Asm.semantics P) (Reacts T)

∧ bisim_IO G main ins outs T.
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∀ D G Gp P main ins outs,
elab_declarations D = OK (exist _ G Gp) →
compile D main = OK P →
sem_node G main (pStr ins) (pStr outs) →
wt_ins G main ins →
wc_ins G main ins →
∃ T, program_behaves (Asm.semantics P) (Reacts T)

∧ bisim_IO G main ins outs T.

if typing/elaboration succeeds. . .

and compilation succeeds. . .

and there exists a
dataflow semantics. . .

and input streams are well-typed and well-clocked. . .

then the generated assembly
produces an infinite trace

and the trace corresponds to the dataflow model.
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Conclusion

Our contributions:
a Coq-based semantics for the control blocks of Scade 6

switch blocks
reset blocks
state machines
last variables

a verified dependency analysis used to prove meta-properties of the model
a verified implementation of an efficient compilation scheme for these blocks

Future work:
proof automation?
missing Scade 6 features:

inlining and modular dependency analysis
pre operator and initialization analysis
arrays

https://velus.inria.fr/phd-pesin
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Full Semantics Dependency Analysis Performances

Semantics – switch blocks

whenC (‹› · xs) (‹› · cs) ≡ ‹› · whenC xs cs
whenC (‹v› · xs) (‹C› · cs) ≡ ‹v› · whenC xs cs
whenC (‹v› · xs) (‹C ′› · cs) ≡ ‹› · whenC xs cs

(whenC H cs)(x) ≡ whenC (H(x)) cs

G ,H, bs ⊢ e ⇓ [cs] ∀i , G ,whenCi (H, bs) cs ⊢ blksi
G ,H, bs ⊢ switch e [Ci do blksi ]i end
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Full Semantics Dependency Analysis Performances

Semantics – reset blocks

maskk
k ′ (F · rs) (sv · xs) ≡ (if k ′ = k then sv else ‹›) ·maskk

k ′ rs xs
maskk

k ′ (T · rs) (sv · xs) ≡ (if k ′ + 1 = k then sv else ‹›) ·maskk
k ′+1 rs xs

G ,H, bs ⊢ es ⇓ xss
G ,H, bs ⊢ e ⇓ [ys] bools-of ys ≡ rs
∀k , G ⊢ f (maskk rs xss) ⇓ (maskk rs yss)
G ,H, bs ⊢ ( reset f every e)(es) ⇓ yss

G ,H, bs ⊢ e ⇓ [ys]
bools-of ys ≡ rs

∀k , G ,maskk rs (H, bs) ⊢ blks
G ,H, bs ⊢ reset blks every e
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Full Semantics Dependency Analysis Performances

Semantics – Hierarchical State Machines

H, bs ⊢ ck ⇓ bs ′ G ,H, bs ′ ⊢I autinits ⇓ sts0 fby sts0 sts1 ≡ sts
∀i , ∀k , G , (selectCi ,k

0 sts (H, bs)),Ci ⊢W autscopei ⇓ (selectCi ,k
0 sts sts1)

G ,H, bs ⊢ automaton initially autinitsck [stateCi autscopei ]
i end

∀x , x ∈ dom(H ′) ⇐⇒ x ∈ locs
∀x e, (last x = e) ∈ locs =⇒ G ,H + H ′, bs ⊢L last x = e

G ,H + H ′, bs ⊢ blks G ,H + H ′, bs,Ci ⊢TR trans ⇓ sts

G ,H, bs,Ci ⊢W var locs do blks until trans ⇓ sts

H, bs ⊢ ck ⇓ bs ′ fby (const bs ′ (C , F)) sts1 ≡ sts
∀i , ∀k , G , (selectCi ,k

0 sts (H, bs)),Ci ⊢TR transi ⇓ (selectCi ,k
0 sts sts1)

∀i , ∀k , G , (selectCi ,k
0 sts1 (H, bs)) ⊢ blksi

G ,H, bs ⊢ automaton initiallyC ck [stateCi do blksi unless transi ]i end
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Full Semantics Dependency Analysis Performances

Semantics – Transitions

first-ofCr (T · bs) (st · sts) ≡ ‹C , r› · first-ofCr bs sts
first-ofCr (F · bs) (st · sts) ≡ st · first-ofCr bs sts

G ,H, bs ⊢ e ⇓ [ys] bools-of ys ≡ bs ′

G ,H, bs ⊢I autinits ⇓ sts
sts ′ ≡ first-ofCF bs ′ sts

G ,H, bs ⊢I C if e; autinits ⇓ sts ′
sts ≡ const bs (C , F)

G ,H, bs ⊢I otherwiseC ⇓ sts

G ,H, bs ⊢ e ⇓ [ys] bools-of ys ≡ bs ′

G ,H, bs,Ci ⊢TR trans ⇓ sts
sts ′ ≡ first-ofCF bs ′ sts

G ,H, bs,Ci ⊢TR if e continueC trans ⇓ sts ′

G ,H, bs ⊢ e ⇓ [ys] bools-of ys ≡ bs ′

G ,H, bs,Ci ⊢TR trans ⇓ sts
sts ′ ≡ first-ofCT bs ′ sts

G ,H, bs,Ci ⊢TR if e thenC trans ⇓ sts ′

sts ≡ const bs (Ci , F)

G ,H, bs,Ci ⊢TR ϵ ⇓ sts
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Full Semantics Dependency Analysis Performances

Semantics – local blocks and last variables

H(last x) ≡ vs
G ,H, bs ⊢ last x ⇓ [vs]

∀x , x ∈ dom(H ′) ⇐⇒ x ∈ locs
∀x e, (last x = e) ∈ locs =⇒ G ,H + H ′, bs ⊢L last x = e

G ,H + H ′, bs ⊢ blks
G ,H, bs ⊢ var locs let blks tel

G ,H, bs ⊢ e ⇓ [vs0] H(x) ≡ vs1 H(last x) ≡ fby vs0 vs1
G ,H, bs ⊢L last x = e

(H1 + H2)(x) =

{
H2(x) if x ∈ H2
H1(x) otherwise.
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Full Semantics Dependency Analysis Performances

Dependency analysis of dataflow equations

node f(x : int) returns (y, z : int)
var half : bool;
let

half = true fby (not half);
(y, z) = if half then (0, x) else (1, y);

tel
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Full Semantics Dependency Analysis Performances

Dependency analysis of control blocks
node drive_sequence(step : bool)
returns (mA, mB : bool)
let
switch step
| true do
mA = not (last mB);
mB = last mA;

| false do (mA, mB) = (last mA, last mB)
end;
last mA = true;
last mB = false;

tel

step

mA mB
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stepmA(l) mB(l)

mA(t) mA(f ) mB(t) mB(f )

mA mB
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Full Semantics Dependency Analysis Performances

Dependency graph analysis

AcyGraph ∅ ∅
AcyGraph V E

AcyGraph (V ∪ {x})E
AcyGraph V E x , y ∈ V y ↛∗

E x

AcyGraph V (E ∪ {x→ y})

Simple graph analysis, based on DFS
Produces a witness that the graph is acyclic (AcyGraph) that we will reason on
More difficult to show termination in Coq
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Definition visited (p : set) (v : set) : Prop :=
(∀ x, x ∈ p → ¬(x ∈ v))

∧ ∃ a, AcyGraph v a
∧ (∀ x, x ∈ v → ∃ zs, graph(x) = Some zs

∧ (∀ y, y ∈ zs → has_arc a y x)).

Program Fixpoint dfs’
(s : { p | ∀ x, x ∈ p → x ∈ graph }) (x : ident)
(v : { v | visited s v }) {measure (|graph| - |s|)}
: option { v’ | visited s v’ & x ∈ v’ ∧ v ⊆ v’ } := ...
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Full Semantics Dependency Analysis Performances

Proving with dependencies

TopoOrder (AcyGraph V E ) []

TopoOrder (AcyGraph V E ) l
x ∈ V ¬In x l (∀y , y→∗

E x =⇒ In y l)

TopoOrder (AcyGraph V E ) (x :: l)
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Full Semantics Dependency Analysis Performances

Performances

Vélus Hept+CompCert Hept+gcc Hept+gcci
stepper_motor 930 1185 (+27%) 610 (−34%) 535 (−42%)

chrono 505 970 (+92%) 570 (+12%) 570 (+12%)

cruisecontrol 1405 1745 (+24%) 960 (−31%) 895 (−36%)

heater 2415 3125 (+29%) 730 (−69%) 515 (−78%)

buttons 1015 1430 (+40%) 625 (−38%) 625 (−38%)

stopwatch 1305 1970 (+50%) 1290 (−1%) 1290 (−1%)

WCET estimated by OTAWA 2
[
Ballabriga, Cassé, Rochange, and Sainrat (2010): OTAWA:
An Open Toolbox for Adaptive WCET Analysis

]
for an armv7

Vélus generally better than Heptagon, but worse than Heptagon+GCC

Inlining of CompCert not fine tuned to small functions generated by Vélus
Some possible improvements

Better compilation of last to reduce useless updates (done in unpublished version)
Memory optimization: state variables in mutually exclusive states can be be reused
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