Formally verified hardening of C programs against fault injection

Sylvain Boulmé, David Monniaux, Basile Pesin, Marie-Laure Potet
Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG

05/06,/2024

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Problem statement
000

Problem statement

S. Boulmé, D. Monniaux Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Problem statement
€00

Attacks by fault injection

#define PIN_LENGTH 4

int verify_pin(char *pin, char *entered) {
int i, ok = 1;4$x 1
for(i = 0; i < PIN_LENGTH; i++) {
Pt A S A =
} if (i '= PIN_LENGTH) exit(1);
return ok;

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Problem statement
0e0

Inserting and verifying countermeasures

Definition (Countermeasure)

Redundant calculation used to catch the fault. May be inserted:
e in hardware (systematically)
@ in the source software (selectively, by the programmer)

@ at compile-time (systematically or selectively)

Properties
@ Correctness: preserve the program semantics?

@ Adequacy: protect from a given attacker model?

We use an interactive theorem prover (Coq)

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Problem statement
ooe

The Coq Interactive Theorem Prover

Inductive N := 1 goal (ID 29)
210N
| S:N>N. ., . N
Fixpoint nm:= =IHn : Vm : N,

match n with plus n m = plus m n

)
l J Coq Development Team (2020): The Coq proof] . : g:z 5 @5 0 o) -m:N
X

assistant reference manual 9| end.

plus (S n) m = plus m (S n)
11 Fact : Vo,
12 plus n 0 = n.
13 Proof.

. . 14 induction n; simpl.

@ A functional programming language 15 = reflesivity.
17 Qed.

@ ‘Extraction’ to OCaml programs B
20 plus n (Sm) =S (plus n m).

21 Proof.

@ A specification language B iriision oy dhieep SEk
23 = reflexivity.
24 = now rewrite IHn.

@ Tactic-based interactive proof 25 qed.

27 Lemma vom,

00T,
[inductionn; intros. _

- now rewrite plus_n_0.

29 Pr.

32 |- rewrite plus_n_S; simpl.
Tl now rewrite IHn.
34 Qed-

Formally verified hardening of C programs against fault injecti

https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/

Verified program transformation
0000000

Verified program transformation

S. Boulmé, D. Monniaux Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Verified program transformation
000000

The Chamois-CompCert verified compiler

lparsing

Csyntax - —— Cminor - - Cminorsel
side simplification stack instruction

effects allocation selection

LTL < -
l register

allocation

optimizations
linearization + countermeasures

Linear > Mach - Assembly
stack frame generation

printing

;

S. Boulmé, D. Monniaux M-L. Potet Formally verified hardening of C programs against fault injection

Verified program transformation
0Oe00000

The RTL intermediate language

#define PIN_LENGTH 4

i =
int verify_pin(char *pin, char *entered) {
int i, ok = 1; nop (/)
for(i = 0; i < PIN_LENGTH; i++) { op (op,F, r, /)
if (pin[i] '= entered[i]) ok = 0; =
} P load (k, addr, 1, r, 1)

|
|
|
return ok; ’ store (k, addr, 7, r, /)
¥ | call(sig, regid, 7, r, 1)

|

|

|

tailcall (sig, regid, r)

verify_pin(x2, x1)

S
cond (cond, 7, I, k)
return (r)
1 = Dintconst(®)
(33 = Dintconst (0)) @B=x+1
g =
true .
| I

(return x5) (6 = int8ulxo + 01)

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Verified program transformation
[e]e] lelele]e]

Example CM: Control-Flow Checking

f(x1)

x3 = Ointconst (413)

if (x1 ==s 42)

[Ferriére (2019): A compiler approach to Cyber-Security]

f(x1)

if (x1 ==s 42)

if (x1 ==s 42)

[X3 =x3 "~ x4] [XB =x3 ~ x4]

))

(if &3 1=s 3)) (if (3 I=s 2))
f

V//////;;ise \\\frui/////;;ue \\\\\\\jlse

[XQ = Dintconst(l)] [X2 = Ointconst(o)]

return x2

S. Boulmé, D. Monniaux, Pesin, M-L. Potet

[x2 = Dintconst(O)] [_ = cm_catch()kii:

[x2 = Dintconst(l)]

\

return x2

Formally verified hardening of C programs against fault injection

https://llvm.org/devmtg/2019-04

Verified program transformation
[e]e]e] lelele]

Example CM: Inter-procedural Control-Flow Checking

'
ipctc_t(ad, x7, x3)) (ne3263 + 0]

7 = int32x4 + 01}~

(e catcnO=—== (int320xd + 0] 536)
RN

RED

x3 = Ointconst (20)

return x2

G2=xt<1) (x2 = ointconst(0))

return x2

Formally ver

Verified program transformation
[ee]ele] Tele]

Implementing program transformations

V1: global graph transformation (using state monad) » Tedious reasoning
V2: local instruction-to-sequence rewriting if ¢ { rts = gsr -~ sigl }
else { rts = gsr ~ sig2 };
if c s |if cd
transf_instr gsr = gsr " rts;
pc pc2 if (gsr != sigl) { cm_catch(); }
goto pcl;
Generic ¥ Zi:e_{gsr ~ es
\] = B
— G transf * G if (gsr != sig2) { cm_catch(); }
goto pc2;
—> specyp : code — Prop }
- ~
pcl pc2

—> VG, spec p(transtr(G))

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Verified program transformation
0O0000e0

RTL semantics

Small-step semantics

st =
‘ S(Z,f,0'7pC,R,M) t to t3,...,tn
| Call(Z, fd, v, M) P L P L .
| Return (X, v, M) S0 1 % Sn

f.code(pc) = op (op, 7, r,/)] eval_op(G,a,0p,R(F)) = [v]
GFS(X,f,0,pc,R,M) S S(Z,f, 0,1, R{r < v}, M)

f.code(pc) = |cond (cond, 7, I, k)] eval_condition(cond, R(F), M) = | b]
GFS(X,f,0,pc,R,M) 5 S(Z, f,o,if bthen |, else b, R, M)

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Verified program transformation
0O00000e

Proving a CompCert pass

Each CompCert pass must satisfy a forward simulation:

5 —= 5
t ti—i—
Sp---2---8}

Formally stated:

if GFS15 S
and match_states 5; S
then 3S), compile(G)+ 5] 4Lt S, and match_states S, S}

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Proof of security
000

Proof of security

S. Boulmé, D. Monniaux, i Formally verified hardening of C programs against fault injection

Proof of security
©00

RTL semantics with faults

Semantic model extended with fault transitions

Example (invert conditional):
f.code(pc) = |cond(cond, 7, h, k)] eval_condition(cond, R(F), M) = | b]

Gk S(T,f,0, pc, R, M) F2utinvertcond],

l, (S, £, 0,if bthenl, elsely, R, M)

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Proof of security
0e0

Security theorem

We say that a program G is secure against a single-fault attack with fault F if:

if initial-state G S
and Gk S Lx Sk
and t=1t; + [Fault F] and nofault t;

then G S, =* Caught .
or 35,41 t, nofaultt, and Gk st Bx Spv1 and GF S RN Sn+1

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Proof of security
ooe

Example: CFC Security proof

f(x1)

x3 = Ointconst(413)]

if (x1 ==s 42)

consider all possible points of attacks x1 = 42

for each attack, reach catch

gsr, rts depend on past steps...

. t *
invert G & stg — st if (x1 ==s 42)

true

complex (but reusable?) lemmas

[X3 =x3 ~ x4] [x3 = x3 ~ x4]
]

(if 3 1=s 3] (if (3 !=s 2)]‘;
Hypothesis: well-formedness of CFG ﬁlse \tm/m \f?lse

[x? = Dintconst(O)] [_ = cm_catch()]@ [x2 = Dintconst(l)]

return x2

Tedious proof: 250 reusable LoC + 1100 specific LoC

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Experimental Evaluation
000

Experimental Evaluation

S. Boulmé, D. Monniaux Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Countermeasures and Optimizations

Experimental Evaluation

Does the program stay protected ?

£(x1)
x3 = Ointconst(413)

if (x1 ==s 42)

detected by
optimization

(if 3 1=s ®)) (if x3 1=s D))

false true true false

[xQ = Dintconst(O)] [_ = cm_catch()};:: [xQ = Uintconst(l)]

[return x2j

£(x1)
x3 = Ointconst(413)

if (x1 ==s 42)

true

[x4 =x3 3] [x4 =x3 2]

[XS =x3 ~ x4] [XS = x3 ~ x4]

(if 3 1=s 3)) (if @3 !=s 2]

false true true false

[x2 = Uintconst(O)] [_ = cm_catch()};:: [x2 = Dintconst(l)]

[return x2]

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet

Formally verified hardening of C programs against fault injection

Experimental Evaluation

Interfacing with evaluation tools

frontend backend
--------- > B

@ strong type (int/pointer) + int size re-inference

optims + CMs @ translation into SSA form

@ [SA instruction abstraction into LLVM instructions

@ not verified
@ translation into basic blocks ~

@ used in Chamois-CompCert j e —
for structural optimizations B BTL
__ e o LAZAR]
@ formally verified

(by translation validation) simulating fault injection
by symbolic execution

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Experimental Evaluation

Preliminary experimental results

We tested CompCert CMs on some Lazart test cases:

No CM with -00 | CM with -00 | CM with -01

Program Type #IP 1F 2F | #IP 1F 2F | #IP 1F 2F
aes_round_key Tl 1 16 0 4 0 32 3 16 0
TI 4 3 3 6 0 6 5 1 4

verify_pin

memcmps Data Load | 4 2 4 6 0 2 2 2 4

Optimizations do break our countermeasures!

Formally verified hardening of C programs against fault injection

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet

Conclusion
000

Conclusion

Boulmé, D. Monniaux, i Formally verified hardening of C programs against fault injection

Conclusion
©00

Contributions

We proposed a methodology to formally verified software countermeasures
@ a framework for local graph rewriting
@ a scheme for defining attacker models
@ definitions and tactics for proving the adequacy of a countermeasure

@ a methodology for experimental evaluation of the compilation chain

We applied this methodology to two countermeasures
@ Intra-procedural control-flow checking

@ Inter-procedural control-flow checking

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

Conclusion
0e0

Perspectives

@ Develop attacker model and adequacy proof for Inter-Procedural CFC

e skip call
o call to the wrong function

@ Apply our evaluation technique to more examples
@ Test by simulation at the binary level

e RTL is only the middle of the compiler: later passes may break CMs

. David, Bardin, Ta, Mounier, Feist, Potet, and Marion (2016): BINSEC/SE:
° USIng BINSEC? [A dynamic symbolic execution toolkit for binary-level analysis }

@ Develop a methodology to protect the CMs from optimizations

H Vu, Heydemann, Grandmaison, and Cohen (2020): Secure delivery of program prop-
° fOHOWIng {erties through optimizing compilation

e mechanized as a hyper-property of the semantics ?

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

http://dx.doi.org/10.1145/3377555.3377897
http://dx.doi.org/10.1145/3377555.3377897

Conclusion
ooe

Thank You! Questions?

Please visit our GitLab repository:
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/
Chamois-CompCert

s

Some PhD/Postdoc positions are available!

https://www-verimag.imag.fr/

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://www-verimag.imag.fr/

	Problem statement
	Verified program transformation
	Proof of security
	Experimental Evaluation
	Conclusion

