
Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Formally verified hardening of C programs against fault injection

Sylvain Boulmé, David Monniaux, Basile Pesin, Marie-Laure Potet
Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG

05/06/2024

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 1/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Problem statement

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 2/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Attacks by fault injection

#define PIN_LENGTH 4

int verify_pin(char *pin, char *entered) {
int i, ok = 1;
for(i = 0; i < PIN_LENGTH; i++) {

if(pin[i] != entered[i]) ok = 0;
}
return ok;

}

E× 1

if(i != PIN_LENGTH) exit(1);

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 3/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Inserting and verifying countermeasures

Definition (Countermeasure)
Redundant calculation used to catch the fault. May be inserted:

in hardware (systematically)
in the source software (selectively, by the programmer)
at compile-time (systematically or selectively)

Properties
Correctness: preserve the program semantics?
Adequacy: protect from a given attacker model?

We use an interactive theorem prover (Coq)

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 4/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

The Coq Interactive Theorem Prover

[Coq Development Team (2020): The Coq proof
assistant reference manual ]

A functional programming language
‘Extraction’ to OCaml programs
A specification language
Tactic-based interactive proof

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 5/25

https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/


Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Verified program transformation

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 6/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

The Chamois-CompCert verified compiler

Csyntax Clight C#minor Cminor Cminorsel

RTLLTL

Linear Mach Assembly

parsing

side
effects

simplification stack
allocation

instruction
selection

CFG

register
allocation

linearization

stack frame generation

printing

optimizations
+ countermeasures

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 7/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

The RTL intermediate language
#define PIN_LENGTH 4

int verify_pin(char *pin, char *entered) {
int i, ok = 1;
for(i = 0; i < PIN_LENGTH; i++) {

if(pin[i] != entered[i]) ok = 0;
}
return ok;

}
verify_pin(x2, x1)

x8 = x1 + x3

x7 = int8u[x8 + 0]

x3 = x3 + 1

nopnop

if (x3 <s 4)

x5 = x4

return x5

x9 = x2 + x3

x6 = int8u[x9 + 0]

if (x6 !=s x7)

x4 = Ointconst(0)x4 = Ointconst(1)

x3 = Ointconst(0)

false

true

false true

i ::=
| nop (l)
| op (op,~r , r , l)
| load (k, addr ,~r , r , l)
| store (k, addr ,~r , r , l)
| call (sig , regid ,~r , r , l)
| tailcall (sig , regid ,~r)
| cond (cond ,~r , l1, l2)
| return (r)

g ::=
| l 7→ i

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 8/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Example CM: Control-Flow Checking

[Ferrière (2019): A compiler approach to Cyber-Security ]

f(x1)

if (x1 ==s 42)

x2 = Ointconst(1) x2 = Ointconst(0)

return x2

true false

f(x1)

if (x3 !=s 3)

_ = cm_catch()x2 = Ointconst(0)

if (x1 ==s 42)

x4 = x3 ^ 3 x4 = x3 ^ 2

if (x1 ==s 42)

x2 = Ointconst(1)

return x2

x3 = x3 ^ x4 x3 = x3 ^ x4

if (x3 !=s 2)

x3 = Ointconst(413)

truefalse

false true

false true

falsetrue

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 9/25

https://llvm.org/devmtg/2019-04


Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Example CM: Inter-procedural Control-Flow Checking

main() f(x1)

x1 = f(x3)

x2 = x1 < 1 x2 = Ointconst(0)

return x2

x3 = Ointconst(20) x2 = x1 + 1

return x2

main()

x8 = ipcfc_main(x4, x6)

x6 = int32[x4 + 0]

int32[stack(0)] = x5

x4 = stack(0)

if (x6 !=s x5)

_ = cm_catch() int32[x4 + 0] = x5

x6 = Ointconst(190)

x6 = x5 ^ x6

return x8

x7 = Ointconst(285)

x6 = x6 ^ x7

x5 = Ointconst(188)

nop

true false

ipcfc_main(x4, x6) ipcfc_f(x3, x5, x1)

int32[x4 + 0] = x6

return x2

if (x7 !=s x5)

_ = cm_catch() int32[x4 + 0] = x5

nop

x7 = Ointconst(188)

x7 = Ointconst(190)

if (x5 !=s x7)

x1 = ipcfc_f(x4, x7, x3)

x7 = int32[x4 + 0]

x2 = Ointconst(0)

x6 = x6 ^ x5

x7 = Ointconst(285)

x6 = x7 ^ x6

x8 = Ointconst(282)

x7 = x7 ^ x8

x5 = x5 ^ x6

int32[x4 + 0] = x5

x7 = x5 ^ x7

x3 = Ointconst(20)

x2 = x1 < 1

x5 = int32[x4 + 0]

if (x4 !=s x6)

x2 = x1 + 1 _ = cm_catch()

return x2

x4 = int32[x3 + 0]

x4 = x4 ^ x5

x5 = x5 ^ x4

int32[x3 + 0] = x4

x6 = Ointconst(188)

x5 = x6 ^ x5

int32[x3 + 0] = x5

x6 = Ointconst(282)

true false

true

false false true

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 10/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Implementing program transformations

V1: global graph transformation (using state monad) I Tedious reasoning

V2: local instruction-to-sequence rewriting

if c

pc1 pc2

if c { rts = gsr ^ sig1 }
else { rts = gsr ^ sig2 };
if c {

gsr = gsr ^ rts;
if (gsr != sig1) { cm_catch(); }
goto pc1;

} else {
gsr = gsr ^ rts;
if (gsr != sig2) { cm_catch(); }
goto pc2;

}

pc1 pc2

transf_instr
Specific

Generic
G G’

transfTR

specTR : code→ Prop

∀G, specTR(transfTR(G))

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 11/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

RTL semantics

Small-step semantics

S0 S1 S2 Sn

t1 t2 t3, . . . , tn

st ::=
| S (Σ, f , σ, pc,R ,M)
| Call (Σ, fd , ~v ,M)
| Return (Σ, v ,M)

f .code(pc) = bop (op,~r , r , l)c eval_op(G, σ, op,R(~r)) = bvc
G ` S (Σ, f , σ, pc,R ,M)

ε−→ S (Σ, f , σ, l ,R{r ← v},M)

f .code(pc) = bcond (cond ,~r , l1, l2)c eval_condition(cond ,R(~r),M) = bbc
G ` S (Σ, f , σ, pc,R ,M)

ε−→ S (Σ, f , σ, if b then l1 else l2,R ,M)

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 12/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Proving a CompCert pass

Each CompCert pass must satisfy a forward simulation:

S1

S2

t

S ′
1

∼

S ′
2

t +

∼

Formally stated:

if G ` S1
t−→ S2

and match_states S1 S ′
1

then ∃S ′
2, compile(G) ` S ′

1
t−→+ S ′

2 and match_states S2 S ′
2

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 13/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Proof of security

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 14/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

RTL semantics with faults

Semantic model extended with fault transitions

S0 S1 S2 S3 Sn Sn+1

t1 t2 t3 t4, . . . , tn tn+1

S ′
3 S ′

m

Fault t ′4, . . . , t ′m

Example (invert conditional):
f .code(pc) = bcond(cond ,~r , l1, l2)c eval_condition(cond ,R(~r),M) = bbc

G F̀ S(Σ, f , σ, pc,R ,M)
[Fault InvertCond]−−−−−−−−−−−→ S(Σ, f , σ, if b then l2 else l1,R ,M)

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 15/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Security theorem

We say that a program G is secure against a single-fault attack with fault F if:

S0 S2 Sn+1

t1 t2

S ′
3

Fault

Caught

t2

if initial-state G S0
and G F̀ S0

t−→? S ′
3

and t = t1 + [Fault F ] and nofault t1

then G F̀ S ′
3

ε−→? Caught
or ∃ Sn+1 t2, nofault t2 and G F̀ st t2−→? Sn+1 and G ` S0

t1+t2−−−→? Sn+1
S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 16/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Example: CFC Security proof
f(x1)

if (x3 !=s 3)

_ = cm_catch()x2 = Ointconst(0)

if (x1 ==s 42)

x4 = x3 ^ 3 x4 = x3 ^ 2

if (x1 ==s 42)

x2 = Ointconst(1)

return x2

x3 = x3 ^ x4 x3 = x3 ^ x4

if (x3 !=s 2)

x3 = Ointconst(413)

truefalse

false true

false true

falsetrue

E

E

E

x1 = 42consider all possible points of attacks
for each attack, reach catch
gsr, rts depend on past steps...
invert G F̀ st0

t−→? st
complex (but reusable?) lemmas

Hypothesis: well-formedness of CFG

Tedious proof: 250 reusable LoC + 1100 specific LoC
S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 17/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Experimental Evaluation

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 18/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Countermeasures and Optimizations

Does the program stay protected ?
f(x1)

if (x3 !=s 3)

_ = cm_catch()x2 = Ointconst(0)

if (x1 ==s 42)

x4 = x3 ^ 3 x4 = x3 ^ 2

if (x1 ==s 42)

x2 = Ointconst(1)

return x2

x3 = x3 ^ x4 x3 = x3 ^ x4

if (x3 !=s 2)

x3 = Ointconst(413)

truefalse

false true

false true

falsetrue

detected by
optimization

f(x1)

if (x3 !=s 3)

_ = cm_catch()x2 = Ointconst(0)

if (x1 ==s 42)

x4 = x3 ^ 3 x4 = x3 ^ 2

x2 = Ointconst(1)

return x2

x3 = x3 ^ x4 x3 = x3 ^ x4

if (x3 !=s 2)

x3 = Ointconst(413)

truefalse

false true

falsetrue

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 19/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Interfacing with evaluation tools

RTL
frontend backend

optims + CMs

simulating fault injection
by symbolic execution

BTL
to LLVM

translation into basic blocks

used in Chamois-CompCert
for structural optimizations

formally verified
(by translation validation)

strong type (int/pointer) + int size re-inference

translation into SSA form

ISA instruction abstraction into LLVM instructions

not verified

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 20/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Preliminary experimental results

We tested CompCert CMs on some Lazart test cases:

No CM with -O0 CM with -O0 CM with -O1
Program Type #IP 1F 2F #IP 1F 2F #IP 1F 2F
aes_round_key TI 1 16 0 4 0 32 3 16 0
verify_pin TI 4 3 3 16 0 6 15 1 4
memcmps Data Load 4 2 4 6 0 2 2 2 4

Optimizations do break our countermeasures!

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 21/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Conclusion

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 22/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Contributions

We proposed a methodology to formally verified software countermeasures
a framework for local graph rewriting
a scheme for defining attacker models
definitions and tactics for proving the adequacy of a countermeasure
a methodology for experimental evaluation of the compilation chain

We applied this methodology to two countermeasures
Intra-procedural control-flow checking
Inter-procedural control-flow checking

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 23/25



Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Perspectives

Develop attacker model and adequacy proof for Inter-Procedural CFC
skip call
call to the wrong function

Apply our evaluation technique to more examples
Test by simulation at the binary level

RTL is only the middle of the compiler: later passes may break CMs
using BINSEC?

[
David, Bardin, Ta, Mounier, Feist, Potet, and Marion (2016): BINSEC/SE:
A dynamic symbolic execution toolkit for binary-level analysis

]
Develop a methodology to protect the CMs from optimizations

following
[

Vu, Heydemann, Grandmaison, and Cohen (2020): Secure delivery of program prop-
erties through optimizing compilation

]
mechanized as a hyper-property of the semantics ?

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 24/25

http://dx.doi.org/10.1145/3377555.3377897
http://dx.doi.org/10.1145/3377555.3377897


Problem statement Verified program transformation Proof of security Experimental Evaluation Conclusion

Thank You! Questions?

Please visit our GitLab repository:
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/

Chamois-CompCert

Some PhD/Postdoc positions are available!
https://www-verimag.imag.fr/

S. Boulmé, D. Monniaux, B. Pesin, M-L. Potet Formally verified hardening of C programs against fault injection 25/25

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://www-verimag.imag.fr/

	Problem statement
	Verified program transformation
	Proof of security
	Experimental Evaluation
	Conclusion

